an的前n项和Sn,a1=7,an+1=(n+2)/nSn,证数列Sn/n是等比数列和S(n+1)=4an

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/25 10:34:23
an的前n项和Sn,a1=7,an+1=(n+2)/nSn,证数列Sn/n是等比数列和S(n+1)=4an
xQJ@c-KB/\bO{!THIE-I'ADE(Zdw[;ܾ&Y*,jR]]N9> t횡?@A׍yKn:$r@fir]H XC{^e.i=?ObìvYϫv[e`#=׋M

an的前n项和Sn,a1=7,an+1=(n+2)/nSn,证数列Sn/n是等比数列和S(n+1)=4an
an的前n项和Sn,a1=7,an+1=(n+2)/nSn,证数列Sn/n是等比数列和S(n+1)=4an

an的前n项和Sn,a1=7,an+1=(n+2)/nSn,证数列Sn/n是等比数列和S(n+1)=4an
令Sn/n=bn
则a(n+1)=Sn+2*bn,(n+1)*b(n+1)-n*bn=n*bn+2*bn,b(n+1)=2*bn
故bn是等比数列
第二问,相当于要求证明S(n+2)=4*S(n+1)-4Sn
即(n+2)*b(n+2)=4*(n+1)*b(n+1)-4*n*bn=2*(n+1)*b(n+2)-n*b(n+2)
显然成立,证明时反推即可