(1/2)三题:1)a(ac+bd)2 2)已知ad≠bc证明(a2+b2)(c2+d2)>(ac+bd)23)比较b/a和(b+m)/(a+m) (a,b,m∈R+)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/25 10:53:03
xPJ@,gHڴSW#d[)Ţ}(>jE
"[*)yt_NRE]Is}dxN.:y
,۔I=r{܊ji`a3J,lFCAUED@Jq8+2Ȅjb&^~P6˲甲SdB2~DǾ:Z|uunX#˥q7L$AftF2À[NgxЌn`:M=v.y*x6w`E%kHӡ#[!ao}I"]Q>!)$wm.=0Q I3 i$`_:w;Ӄ_
(1/2)三题:1)a(ac+bd)2 2)已知ad≠bc证明(a2+b2)(c2+d2)>(ac+bd)23)比较b/a和(b+m)/(a+m) (a,b,m∈R+)
(1/2)三题:1)a(ac+bd)2
2)已知ad≠bc证明(a2+b2)(c2+d2)>(ac+bd)2
3)比较b/a和(b+m)/(a+m) (a,b,m∈R+)
(1/2)三题:1)a(ac+bd)2 2)已知ad≠bc证明(a2+b2)(c2+d2)>(ac+bd)23)比较b/a和(b+m)/(a+m) (a,b,m∈R+)
(1)构造方程ax^2+bx+c=0,x=1时有a+b+c=0,所以x=1是该方程的解.△=b^2-4ac≥0
(2)(a^2+b^2)(c^2+d^2)-(ac+bd)^2=a^2d^2+b^2c^2-2abcd=(ab-bc)^2≥0,原不等式成立.
(3)当a>b时,b/a<(b+m)/(a+m)
(a^2+b^2)(c^2+d^2) (a,b,c,d∈R)
=a^2·c^2 +b^2·d^2+a^2·d^2+b^2·c^2
=a^2·c^2 +2abcd+b^2·d^2+a^2·d^2-2abcd+b^2·c^2
=(ac+bd)^2+(ad-bc)^2
≥(ac+bd)^2,
写不过啊!