若圆x^2+y^2=4与圆x^2+y^2+2ay-6=0(a>0)的公共弦长是2根号3 则a=
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 10:41:28
xQN@.KJS/amnl5Ul01
HE
y#Y=s^wT{s}n!ŶQnwU<̤D9#0{c_f>%>liE8tu't^7gbP~Y}V7Dԛo.ш)n!(IMD#zk(ԒԂ$P^! Su
~1
D__2;ńq0}E7Lʉ:wA!X
HNcZȶBBB,zCp}6e n7~M4JlJfC;?єN
若圆x^2+y^2=4与圆x^2+y^2+2ay-6=0(a>0)的公共弦长是2根号3 则a=
若圆x^2+y^2=4与圆x^2+y^2+2ay-6=0(a>0)的公共弦长是2根号3 则a=
若圆x^2+y^2=4与圆x^2+y^2+2ay-6=0(a>0)的公共弦长是2根号3 则a=
x^2+y^2=4与圆x^2+y^2+2ay-6=0
二圆方程作差,可得两圆公共弦所在直线为:ay=3 y=3/a
此直线被圆x^2+y^2=4所截得弦长为2根号3
由弦长公式:(L/2)^2=r^2-d^2 所以d^2=r^2-(L/2)^2=4-3=1
d是圆x^2+y^2=4的圆心到直线y=3/a的距离
所以d=3/|a|=1
a=3或者a=-3
x^2+(y+a)^2=6+a^2,第二个圆的圆点在y轴上,画图得(-a-1)+3=6+a^2,解得a=1