抛物线y^2=8x的动弦AB的长为6,求弦AB的中点M到y轴的最短距离如果过程写起来太麻烦,就直接写答案好了,我做出来一个很奇怪的数字.可是为什么我觉得是过焦点的AB的中点是最短距离啊?

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/01 05:16:55
抛物线y^2=8x的动弦AB的长为6,求弦AB的中点M到y轴的最短距离如果过程写起来太麻烦,就直接写答案好了,我做出来一个很奇怪的数字.可是为什么我觉得是过焦点的AB的中点是最短距离啊?
xTMOA+=BЄi &M^B*]hqˤ?wf9limM쩧y~gf+yR+~Jg0^DssG2aEܾB7匯?87Mn ʰsge9_nXӄV{:nׯن1f0t#}00Xm1a T.YC9-¤N11k^%F~n<]q1)p9QЇĵjZhn<jP鋓 UTMG*۽E*6\U.w%苢0԰L#]Q籐D1q~+Y@" ~!?tizzLzqDuԠqF~nB酮To2͜`yj#DW \=e"iR ?dpq@~С < _h~&#TLp &G#jTN0E+@yMѤjZ & Ű~K wƠ

抛物线y^2=8x的动弦AB的长为6,求弦AB的中点M到y轴的最短距离如果过程写起来太麻烦,就直接写答案好了,我做出来一个很奇怪的数字.可是为什么我觉得是过焦点的AB的中点是最短距离啊?
抛物线y^2=8x的动弦AB的长为6,求弦AB的中点M到y轴的最短距离
如果过程写起来太麻烦,就直接写答案好了,我做出来一个很奇怪的数字.
可是为什么我觉得是过焦点的AB的中点是最短距离啊?

抛物线y^2=8x的动弦AB的长为6,求弦AB的中点M到y轴的最短距离如果过程写起来太麻烦,就直接写答案好了,我做出来一个很奇怪的数字.可是为什么我觉得是过焦点的AB的中点是最短距离啊?
y^2=8x
p=4,焦点坐标为:(2,0),准线为x=-2
过焦点的直线为y=k(x-2),
与抛物线方程联立得:k^2(x-2)^2=8x
化简得:k^2x^2-(4k^2+8)x+4k^2=0
x1+x2=(4k^2+8)/k^2=4+8/k^2≥4
弦中点M到y轴的距离=(x1+x2)/2≥2
该抛物线过焦点弦长为6的弦不存在,因为抛物线的点到焦点距离=到准线距离,那么
设两点坐标为x1,x2,则:x1-(-2)+x2-(-2)=6,得:x1+x2=2,与上式矛盾.
其实,可以假设直线过(0,c)点,则该直线可写为y=k(x-c),代入抛物线方程得:
k^2(x-c)^2=8x,化简得:k^2x^2-(2ck^2+8)x+k^2c^2=0
x1+x2=(2ck^2+8)/k^2=2c+8/k^2
弦中点M到y轴的距离=(x1+x2)/2=c+4/k^2
显然,只有但k趋向无穷大的时候,取得最小值c.即抛物线与x=c的交点弦.
所以要满足题意,y=±3,x=9/8即M到y轴的最短距离.

抛物线Y^2=8X的动弦AB的长为16,求弦AB的中点M到Y轴的最短距离 抛物线Y^2=8X的动弦AB长为16,求弦AB的中点M到Y轴的最短距离 抛物线求最小值问题已知抛物线y=x²,动弦AB的长为2,求AB中点纵坐标的最小值? 抛物线y²=8x的动弦AB的长为16,求弦AB中点M到y轴的最短距离~急求~谢谢! 抛物线Y平方=8X的动弦AB的长为16,求弦AB的中点M到Y轴的最短距离 抛物线Y平方=8X的动弦AB的长为16,求弦AB的中点M到Y轴的最短距离 抛物线y2=8x的动弦AB的长为16,求弦AB的中点M到y轴的最短距离 抛物线Y^2=8X的动弦AB长为16,求弦AB的中点M到Y轴的最短距离为什么AB过焦点 抛物线Y平方等于8X的动弦AB长为16,求弦AB的中点M到Y轴的最短距离? 已知过抛物线y^2=4x的焦点F 的直线交抛物线与AB 两点,过原点o作向量OM,使向量OM垂直于向量AB 垂足为M ,求M的轨迹方程.抛物线y^2=8x 的动弦AB 的长为6,求弦AB的中点M到y轴的最短距离. 已知抛物线x²=4y上有一条长为6的动弦AB,则AB中点到x轴的最短距离为 已知抛物线y=x^2,动弦AB的长为2,求AB中点M到x轴的最短距离,并求此时M的坐标.此时M的坐标? 抛物线【数学】A B为抛物线y的平方=2x上的动点 【AB】=3求AB的中点到Y距离的最小值 已知抛物线y=x^2,动弦AB的长为a(a为常数且大于等于1),求AB中点M到x轴的最短距离 抛物线y^2=8x的动弦AB的长为6,求弦AB的中点M到y轴的最短距离如果过程写起来太麻烦,就直接写答案好了,我做出来一个很奇怪的数字.可是为什么我觉得是过焦点的AB的中点是最短距离啊? 已知抛物线y^2=8x的弦ab过它的焦点,直线ab的斜率为2,求弦ab的长 已知抛物线x^2=8y的弦ab过它的焦点,直线ab的斜率为2,求弦ab的长? 一个数学参数方程的问题抛物线y=x^2有长度为2的动弦AB,求AB中点M的轨迹方程.