数列{an}中,a1=8,a4=2,且满足a(n+2)-2a(n+1)+an=0(n属于Z),设bn=1/n(12-an)n属于N+)Tn=b1+b2+...+bn,是否存在最大的整数m,使得任意的(n属于N+)总有Tn>m/32成立?若存在,求出m的值,若不存在说明理由.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 11:46:10
数列{an}中,a1=8,a4=2,且满足a(n+2)-2a(n+1)+an=0(n属于Z),设bn=1/n(12-an)n属于N+)Tn=b1+b2+...+bn,是否存在最大的整数m,使得任意的(n属于N+)总有Tn>m/32成立?若存在,求出m的值,若不存在说明理由.
xn@_G\m/ГOz0ʥP{*(j4ڤ%iKT!(AI޵{:^jgfgvj Vt`:DAJ)>GK'G,8> Yq((cEJ :t7#E)J+)xo:ذg_c`_A . n~ny| __~Æ^ 4F͓mfB"t7 E+kX3+{6^5Iu?HI8qpk£Y8l^ZvNN(q- W1$ S4 _9eIi7VgAєE2I>v;A6Y_m>/E<\6=@^et=0񦩿:Juc X8JdZ݅8 [$UǐQ1 E_ySYX8~䵍'LOd_]qH Q$ŬIu

数列{an}中,a1=8,a4=2,且满足a(n+2)-2a(n+1)+an=0(n属于Z),设bn=1/n(12-an)n属于N+)Tn=b1+b2+...+bn,是否存在最大的整数m,使得任意的(n属于N+)总有Tn>m/32成立?若存在,求出m的值,若不存在说明理由.
数列{an}中,a1=8,a4=2,且满足a(n+2)-2a(n+1)+an=0(n属于Z),设bn=1/n(12-an)n属于N+)Tn=b1+b2+...+bn,是否存在最大的整数m,使得任意的(n属于N+)总有Tn>m/32成立?若存在,求出m的值,若不存在说明理由.

数列{an}中,a1=8,a4=2,且满足a(n+2)-2a(n+1)+an=0(n属于Z),设bn=1/n(12-an)n属于N+)Tn=b1+b2+...+bn,是否存在最大的整数m,使得任意的(n属于N+)总有Tn>m/32成立?若存在,求出m的值,若不存在说明理由.
a(n+2)-2a(n+1)+an=0 推出 :a(n+2)-a(n+1)=a(n+1)-an 可知an为等差数列.
a1=8,a4=2 解得:an=10-2n 得:bn=1/2n(n+1)=1/2(1/n-1/(n+1))
Tn=1/2(1-1/2+1/2-1/3+.+1/n-1/(n+1))=1/2-1/2(n+1)
Tn=1/2-1/2(n+1)
当n=1时,Tn最小Tnmin=1/4
令1/4>m/32解得:m小于8 即最大整数m为7

1

a(n+2)-a(n+1)=a(n+1)-an=d
所以an为等差数列,a1=8,d=(a4-a1)/3=-2, an=10-2n
bn=1/n(12-10+2n)=1/n(2n+2)=0.5[1/n-1/(n+1)]
Tn=0.5[1-/(n+1)]
T1=0.25, Tn<0.5, 当n趋于无穷大时,Tn递增-->0.5
由T1=0.25>m/32, 得m<8。
m最大取7.

a(n+2)-2a(n+1)+an=0 => An 等差
A1=8,A4=2 => An=10-2n
=> bn=1/n(12-10+2n)=1/2n(n+1)=(1/2)*[1/n-1/(n+1)]
=>Tn=(1/2)(1-1/(n+1)]
当n=1时,上式最小为1/4 因此m=7

在等差数列an中,a1+a3=8且a4^2=a2*a9,求数列的首项、公差 数列中,a1=8,a4=2,且满足an+2-2an+1+an=0.证明{an}是等差数列 数列{an}中,a1+a4=18,an=2an-1,则该数列前8项和等于 已知数列{an}是等比数列 、a1=2且a3+1是a1和a4的等差中项,求数列an的通项公式 )数列{An}中,A1=8,A4=2,且满足A(n+2)=2A(n+1)-.谢谢)数列{An}中,A1=8,A4=2,且满足A(n+2)=2A(n+1)-An,n属于N* 5 | 解决时间:2010-11-18 22:00 | 提问者:shuxuesg5 数列{An}中,A1=8,A4=2,且满足A(n+2)=2A(n+1)-An,n属于N* (1) 求 高一数列通项.数列{an}中 a1=2 ,a4=8且满足 a(n-2)=2a(n-1) - an (n∈N+)求数列{an}通项公式 数列计算问题数列an中,a1=1,公比q=2,求a4,答案是不是8 等比数列{an}中,a1=2,a4=16.求数列{an}通项公式, 等比数列{an}中 已知a1=2 a4 =16 求{an}数列通项公式 等比数列{AN}中,已知A1=2,A4=16.数列{AN}的通项公式 数列an中a1=2 an+1=2an+3则数列的第4项a4= 数列{an}中,a1=8,a4=2且满足a(n+2)=2a(n+1)-an,n属于N*数列{an}中,a1=8,a4=2且满足a(n+2)=2a(n+1)-an,n属于N*1.求数列{an}的通项公式2.设Sn=|a1|+|a2|+...+|an|,求Sn3.设bn=1/n(12-an)[n属于N*]是否存在最大的整数m,使得 数列{An}中,A1=8,A4=,且满足:2A(n+2)-2A(n+1)+An=0数列{An}中,A1=8,A4=,且满足:2A(n+2)-2A(n+1)+An=0 在等差数列an 中,a1=8,a4=2,1.求数列的通项公式an及sn 在等差数列{an}中,已知a1=2,a4=8,求数列{an}的前四项的和S4 在数列an中,a1=1/3,且sn=n(2n-1)an,通过求a2.a3.a4,猜想an的表达式 数列{an}中a1=8,a4=2,且满足a(n+2)-2a(n+1)+an=0求通项公式(2)设Sn=‖a1‖+‖a2‖+```‖an‖求Sn 数列an中,a1=8,a4=2,且满足a(n+2)-2*a(n+1)+an=0(n∈N*).数列an中,a1=8,a4=2,且满足a(n+2)-2*a(n+1)+an=0(n∈N*)(1)求数列an的通项公式(2)设Sn=|a1|+|a2|+...+|an|,求Sn