设等比数列{an}的首项a1=256,前n项和为Sn,且Sn,Sn+2,Sn+1成等差数列.(I)求{an}的公比q (2)用iin表示{an}的前n项之积,即 IIn=a1*a2......an,试比较II7 II8 II9的大小 己知函数f(x)=x+t/x(t>0)和点P(1,0),过点P作曲

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 11:46:38
设等比数列{an}的首项a1=256,前n项和为Sn,且Sn,Sn+2,Sn+1成等差数列.(I)求{an}的公比q (2)用iin表示{an}的前n项之积,即 IIn=a1*a2......an,试比较II7 II8 II9的大小 己知函数f(x)=x+t/x(t>0)和点P(1,0),过点P作曲
xWOYW3`)C# $Ãl:uY7" % R]XQ])(JENO {νw-&KLv60w==Qm+-{+,exzqsb^,`λ[wbk.;Qۻ'_}3P\~7j ne]:ϳQ۴HE/e~i0An>dCpUIfRs GTqrY!zDt8{Xŧ1sgdm9sѨL8=d 0/}N߽+ B5a"NmqQukLi DIT.ITKabP-٦,)K+<>)TWr_gAz(leK`0At C6P- tQ)

设等比数列{an}的首项a1=256,前n项和为Sn,且Sn,Sn+2,Sn+1成等差数列.(I)求{an}的公比q (2)用iin表示{an}的前n项之积,即 IIn=a1*a2......an,试比较II7 II8 II9的大小 己知函数f(x)=x+t/x(t>0)和点P(1,0),过点P作曲
设等比数列{an}的首项a1=256,前n项和为Sn,且Sn,Sn+2,Sn+1成等差数列.(I)求{an}的公比q (2)用iin表示{an}
的前n项之积,即
IIn=a1*a2......an,试比较II7 II8 II9的大小
己知函数f(x)=x+t/x(t>0)和点P(1,0),过点P作曲线y=f(x)的两条切线PM、PN,切点分别为M、N
(1)设/MN/=g(t)试求函数g(t)的表达式;
(2)是否存在t,使得M、N与A(1,0)三点共线,若存在,求出t的值;若不存在,请说明理由
『3』在(1)的条件下,若对任意的正整数n,在区间[2,n+64/n]内总存在m+1个实数a1,a2,...,am,am+1,使得不等式g(a1)+g(a2)+...+g(am)

设等比数列{an}的首项a1=256,前n项和为Sn,且Sn,Sn+2,Sn+1成等差数列.(I)求{an}的公比q (2)用iin表示{an}的前n项之积,即 IIn=a1*a2......an,试比较II7 II8 II9的大小 己知函数f(x)=x+t/x(t>0)和点P(1,0),过点P作曲
2S(n+2)=Sn+S(n+1)
2[Sn+a(n+1)+a(n+2)]=Sn+Sn+a(n+1)
2Sn+2a(n+1)+2a(n+2)=2Sn+a(n+1)
2a(n+1)+2a(n+2)=a(n+1)
a(n+1)+2a(n+2)=0
2a(n+2)=-a(n+1)
a(n+2)/a(n+1)=-1/2
即q=-1/2
an=a1q^(n-1)
=256*(-1/2)^(n-1)
=2^8*(-1/2)^(n-1)
=(-1/2)^-8*(-1/2)^(n-1)
=(-1/2)^(n-9)
=(-2)^(9-n)
IIn=a1*a2.an
II7=a1*a2.a7
=(-2)^8*(-2)^7*.*(-2)^2
=(-2)^[(2+8)*7/2]
=(-2)^35
II8=a1*a2.a8
=(-2)^8*(-2)^7*.*(-2)^1
=(-2)^[(1+8)*8/2]
=(-2)^36
II9=a1*a2.a9
=(-2)^8*(-2)^7*.*(-2)^0
=(-2)^[(0+8)*9/2]
=(-2)^36
II8=II9>II7
(1)
f(x)=x+t/x
f'(x)=1-t/x^2
设过A点与f(x)相切直线切点为(a,b)
切线斜率k=b/(a-1)=f'(a)=1-t/a^2
又f(a)=a+t/a=b
(a+t/a)/(a-1)=1-t/a^2
a^2+2at-t=0
t>0方程有两根,即为分别M,N横坐标,设为x1,x1
则M,N纵坐标分别为y1=x1+t/x1,y2=x2+t/x2
y1+y2=x1+x2+t/x1+t/x2=(x1+x2)+t(x1+x2)/x1x2
=-2t+t(-2t)/(-t)=0
y1y2=(x1+t/x1)(x2+t/x2)=x1x2+tx1/x2+tx2/x1+t^2/(x1x2)
=-t+t[(x1+x2)^2-2x1x2]/(-t)+t^2/(-t)
=-4t^2-4t
|MN|^2=(x1-x2)^2+(y1-y2)^2
=(x1+x2)^2-4x1x2+(y1+y2)^2-4y1y2
=(-2t)^2+4t+0+4(4t^2+4t)
=20(t^2+t)
g(t)=|MN|=2√[5(t^2+t)]
(2)
沿用(1)的设定和结论,M,N为不同两点x1≠x2
假设M,N,A共线,则直线AM,AN斜率相等
f'(x1)=f'(x2)
1-t/x1^2=1-t/x2^2
x1^2=x2^2
x1=-x2
又:
(x1+t/x1-1)/x1=(x2+t/x2-1)/x2
x1+t/x1-1=x1+t/x1+1
无解
所以不存在t使M,N,A共线
(3)
应当是在(1)的条件下
易知g(t)=2√[5(t^2+t)]在区间(2,n+64/n]单调递增
使不等式g(a1)+g(a2)+.g(am)=16,而对于任意正整数n都要成立
所以必须满足g(a1)+g(a2)+.g(am)mg(2)
所以:mg(2)

为m(x乘AM)

2S(n+2)=Sn+S(n+1)
2[Sn+a(n+1)+a(n+2)]=Sn+Sn+a(n+1)
2Sn+2a(n+1)+2a(n+2)=2Sn+a(n+1)
2a(n+1)+2a(n+2)=a(n+1)
a(n+1)+2a(n+2)=0
2a(n+2)=-a(n+1)
a(n+2)/a(n+1)=-1/2
即q=-1/2
an=...

全部展开

2S(n+2)=Sn+S(n+1)
2[Sn+a(n+1)+a(n+2)]=Sn+Sn+a(n+1)
2Sn+2a(n+1)+2a(n+2)=2Sn+a(n+1)
2a(n+1)+2a(n+2)=a(n+1)
a(n+1)+2a(n+2)=0
2a(n+2)=-a(n+1)
a(n+2)/a(n+1)=-1/2
即q=-1/2
an=a1q^(n-1)
=256*(-1/2)^(n-1)
=2^8*(-1/2)^(n-1)
=(-1/2)^-8*(-1/2)^(n-1)
=(-1/2)^(n-9)
=(-2)^(9-n)
IIn=a1*a2......an
II7=a1*a2......a7
=(-2)^8*(-2)^7*....*(-2)^2
=(-2)^[(2+8)*7/2]
=(-2)^35
II8=a1*a2......a8
=(-2)^8*(-2)^7*....*(-2)^1
=(-2)^[(1+8)*8/2]
=(-2)^36
II9=a1*a2......a9
=(-2)^8*(-2)^7*....*(-2)^0
=(-2)^[(0+8)*9/2]
=(-2)^36
II8=II9>II7

(1)
f(x)=x+t/x
f'(x)=1-t/x^2
设过A点与f(x)相切直线切点为(a,b)
切线斜率k=b/(a-1)=f'(a)=1-t/a^2
又f(a)=a+t/a=b
(a+t/a)/(a-1)=1-t/a^2
a^2+2at-t=0
t>0方程有两根,即为分别M,N横坐标,设为x1,x1
则M,N纵坐标分别为y1=x1+t/x1,y2=x2+t/x2
y1+y2=x1+x2+t/x1+t/x2=(x1+x2)+t(x1+x2)/x1x2
=-2t+t(-2t)/(-t)=0
y1y2=(x1+t/x1)(x2+t/x2)=x1x2+tx1/x2+tx2/x1+t^2/(x1x2)
=-t+t[(x1+x2)^2-2x1x2]/(-t)+t^2/(-t)
=-4t^2-4t
|MN|^2=(x1-x2)^2+(y1-y2)^2
=(x1+x2)^2-4x1x2+(y1+y2)^2-4y1y2
=(-2t)^2+4t+0+4(4t^2+4t)
=20(t^2+t)
g(t)=|MN|=2√[5(t^2+t)]
(2)
沿用(1)的设定和结论,M,N为不同两点x1≠x2
假设M,N,A共线,则直线AM,AN斜率相等
f'(x1)=f'(x2)
1-t/x1^2=1-t/x2^2
x1^2=x2^2
x1=-x2
又:
(x1+t/x1-1)/x1=(x2+t/x2-1)/x2
x1+t/x1-1=x1+t/x1+1
无解
所以不存在t使M,N,A共线
(3)
应当是在(1)的条件下
易知g(t)=2√[5(t^2+t)]在区间(2,n+64/n]单调递增
使不等式g(a1)+g(a2)+......g(am)m要最大则a(i)尽量小,a(m+1)尽量大
又n+64/n>=16,而对于任意正整数n都要成立
所以必须满足g(a1)+g(a2)+......g(am)又g(a1)+g(a2)+......g(am)>mg(2)
所以:mg(2)m2√30<2√1360
m<√(136/3),m<=6

收起

vswv

设数列{an}中,a1=1且an+1=3an+4,求证{an+2}是等比数列求{an}的前n项和为Sn 设{an}是公差不为0的等差数列,a1=2,a1、a3、a6成等比数列,求{an}的前n项和Sn的值 设等比数列{AN}的前N项和为SN.A1=1,S6=4S3,则A4=? 设等比数列an的前n项和为Sn,若a1=1,S6=4S3则a4 设sn为等比数列an的前n项和,2a3-a4=0,S5/a1= 设等比数列{an}的前n项和为Sn,已知a1=2011,且an+2an+1+an+2=0,则S2012=? 设等比数列{an}的前n项和为Sn,已知a1=2011,且an+2an+1+an+2=0(N∈N*),则S2012? 设an是公差不为0的等差数列,a1=2且a1,a3,a6成等比数列,则an的前n项和Sn= 设an是公差不为0的等差数列,a1=2,且a1,a3,a6成等比数列,则an的前n项和Sn=? 设an是公差不为0的等差数列 a1=2 且a1 a3 a6成等比数列 则 an的前n项和Sn=? 等比数列an的首项a1=2006,公比q=1/2,设前n项的积为pn,则n=?时,pn最大 设数列An的前n项和为Sn,已知a1=1,An+1=Sn+3n+1求证数列{An+3}是等比数列 设数列{an}的前n项和为Sn=2n平方,{bn}为等比数列,且a1=b1,b2(a2-a1)=b1 设等比数列{an}的前n项和为Sn,Sn=[a1*(3^n-1)]/2,≥1,且a4=54,则a1=? 设公比大于零的等比数列{an}的前n项和Sn,且a1=1,S3=7,求数列{an}的通项公式 设等差数列{an}的首项a1为a,前n项和为Sn,若S1S2S3成等比数列求数列{an}的通项公式… 设{an}是公比为正数的等比数列,若a1=1,a5=16,则数列{an}的前7项和为? 设数列{an}是公比为正数的等比数列,a1=2,a3=a2+4,求数列{an}的前n项和Sn