(三角形面积=SinA·SinB·SinB·2·R平方)咋证明啊

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 22:54:23
(三角形面积=SinA·SinB·SinB·2·R平方)咋证明啊
x){Ɏ'=ݻEϗ s<H:HCۃl{:N~ٌSl)5BΆ*t';v)$MMQN (6$e&Npn2 >lx{)`t)h%&i)BX #`svB% V(hA}d_\g '

(三角形面积=SinA·SinB·SinB·2·R平方)咋证明啊
(三角形面积=SinA·SinB·SinB·2·R平方)咋证明啊

(三角形面积=SinA·SinB·SinB·2·R平方)咋证明啊
证明:因为 a/sinA=b/sinB=c/sinC=2R
a=sinA*2R,
b=sinB*2R,
c=sinC*2R,
所以:三角形面积=1/2 *ab* sinC=1/2 * sinA*2R * sinB*2R sinC
=sinA * sinB *sinC*2 *R平方

在三角形ABC中,如果sinA·sinA+sinB·sinB=sin(A+B),且A、B是锐角,求A+B (三角形面积=SinA·SinB·SinB·2·R平方)咋证明啊 三角形内角a,b,sina·sinb 在三角形中,sin(C-A)=1,sinB=1/3,求sinA,在三角形中,sin(C-A)=1,sinB=1/3,求sinA,AC=根号6.求三角形面积 sinb-sina=sin(b-c)求c的大小在三角形abc中,sinb-sina=sin(b-c)(1)求角c的大小(2)若三角形abc周长为2试求三角形abc面积最大值 三角形面积S=rR(sinA+sinB+sinC)的证明? 三角形abc的外接圆半径为1,满足2(sin^2A-sin^2C)=(sinA-sinB)b,则三角形ABC的面积的最大值为多少 在三角形ABC中,已知(sinA+sin+B+sinC)(sinA+sinB-sinC)=3,a 在三角形ABC中.已知sin^2A+sin^2B*sin^2C=sinB*sinC+sinC*sinA+sinA*sinB,求证三角形ABC是等边三角形 在三角形ABC中,sin(C-A)=1,sinB=1/3,(1)求sinA.(2),设AC=根号6,求三角形ABC的面积 三角形ABC,tanC=(sinA+sinB)/(cosA+cosB),sin(B-A)=cosC.若三角形面积=3+根号三,求a,c 三角形ABC中,sin(c-a)=1,sinB=1/3,求sinA;设AC=根号6,求三角形的面积 三角形ABC中,sin(A-B)=1,sinB=1/3,(1).求sinA,(2).设AC=根号6,求三角形ABC的面积 三角形ABC,tanC=(sinA+sinB)/(cosA+cosB),sin(B-A)=cosC.若三角形面积=3+根号三,求a,c 在三角形ABC中,sin(C-A)=1,sinB=1/3,求sinA,若AC=根号下6,求三角型面积 在三角形ABC中,已知(sinA+sin+B+sinC)(sinA+sinB-sinC)=3,a在三角形ABC中,已知(sinA+sinB+sinC)(sinA+sinB-sinC)=3,a 在三角形abc中,已知sin²a+sin²b=sin²c+sina+sinb,求角c 判断三角形形状(b+a)/a=sinB/sinB-sinA且2sinAsinB=2sin^C