数列an是等差数列,bn是等比数列,满足b1=a1^2,b2=a2^2,b3=a3^2,求数列bn公比q

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 18:27:05
数列an是等差数列,bn是等比数列,满足b1=a1^2,b2=a2^2,b3=a3^2,求数列bn公比q
xRN0~Ry\y"II0&&#ă EcЋD >Y'7^nуvXZv*.kfK[ sd dۘcpPF` ) ՚N7jE<h/  c_.L9dAY+ABt`U<0,j^^AXP`V^6̡U3k\m'Y7Ηutґɖr쌉f(%G Λ?=E grC)i8XCPNzC0 aÀG=Vΰg#5kHoOr' ĺqO i!-`MÖ3= ZEqOV'

数列an是等差数列,bn是等比数列,满足b1=a1^2,b2=a2^2,b3=a3^2,求数列bn公比q
数列an是等差数列,bn是等比数列,满足b1=a1^2,b2=a2^2,b3=a3^2,求数列bn公比q

数列an是等差数列,bn是等比数列,满足b1=a1^2,b2=a2^2,b3=a3^2,求数列bn公比q
设an公差是d,
因为b1*b3=(b2)^2
所以a1^2*(a1+2d)^2=[(a1+d)^2]^2
(a1^2+2a1d)^2[(a1+d)^2]^2=0
[a1^2+2a1d+(a1+d)^2][a1^2+2a1d-(a1+d)^2]=0
所以a1^2+2a1d+(a1+d)^2=0,
或a1^2+2a1d-(a1+d)^2=0
若a1^2+2a1d-(a1+d)^2=0,则d=0,不合
若a1^2+2a1d+(a1+d)^2=0,
即2a1^2+4a1d+d^2=0
亦即2(a1/d)^2+4a1/d+1=0
解得a1/d=-1±√2/2
若a1/d=-1-√2/2
公比q=b2/b1=(a2/a1)^2=(1+d/a1)^2=(√2-1)^2=3-2√2
若a1/d=-1+√2/2
公比q=b2/b1=(a2/a1)^2=(1+d/a1)^2=(-1-√2)^2=3+2√2

设数列an等差p
b1=a1^2
b2=a2^2=(a1+p)^
b3=a3^2=(a1+2p)^2
(a1+2p)^2/(a1+p)^2=(a1+p)^2/a1^2
(a1+2p)a1=(a1+p)(a1+p) p=0 q=1
或-(a1+2p)a1=(a1+p)(a1+p)
2a1^2+4a1p+p^2
(2a1+p)(a1+2p)-p
=(a1+a2)a3=p

如果数列{an}是等差数列,设bn=(1/2)^an,数列{bn}是等比数列吗? 已知等比数列{bn}是公比为q与数列{an}满足bn=3^an,(1)证明数列{an}是等差数列 (2)若b8=3,且数列{an}...已知等比数列{bn}是公比为q与数列{an}满足bn=3^an,(1)证明数列{an}是等差数列 (2)若b8=3,且数列{an}的 各项和为正数的数列an和bn满足an,bn,an+1成等差数列,bn,an+1,bn+1成等比数列 求证(根号bn)是等差数列 已知数列{an}是等差数列,且bn=2的an次方,求证数列{bn}是等比数列高二等比数列 数列an是等差数列,bn是等比数列,满足b1=a1^2,b2=a2^2,b3=a3^2,求数列bn公比q 在等比数列{an}中,an>0,n属于N*:若{bn}是等差数列,求证数列{lg an}是等差数列,数列{2bn}是等比数列 已知数列{bn}是等差数列,a>0,求证数列{an的b次方}是等比数列 已知等差数列{an}满足a2=3,a5=9,若数列{bn}满足b1=3,bn=a2^n (2^n是a的下标) ,求求{bn}的通向公示;证明:数列bn+1 是等比数列 已知数列an,bn满足a1=1/4,(1-an)*an+1=1/4,bn=an-1/2,试问数列1/bn是等差数列还是等比数列,说明理 已知正项数列{an}{bn}满足,对任意正整数n,都有an,bn,an+1成等差数列,bn,an+1,bn+1成等比数列且a1=10,a2=15求证:数列(根号Bn)是等差数列求数列{an},{bn}通项公式设Sn=1/(a1)+1/(a2)+1/(a3)+.1/(an)如果对任 已知等差数列{an}中,a1=1,a7=4,数列{bn}是等比数列,b1=6,b2=a3.满足a26bna26 X bn 数列{an}与{bn}满足an=1/n(b1+b2+…+bn)(n∈N).求证:数列{bn}为等差数列的充要条件是数列{an}为等差数列 已知数列{an}满足a1=1,a2=3,an+2=3an+1-2an(n属於N+)证明数列{an+1-an}是等比数列?若数列{bn}满足(4^b1-1)(4^b2-1)……(4^bn-1)=(an+1)^bn,证明数列{bn}是等差数列? 已知数列{an}是等比数列,{bn}是等差数列,且b1=o,数列{cn}满足cn=an+bn,它的前4项依次是1,a,2a,2,求数列{cn}的前n项和Sn 合情推理与演绎推理的题已知等差数列有一性质:若数列{an}为等差数列,数列{bn}满足bn=1/n(a1+ a2+a3……+an),则数列{bn}也是等差数列,类似上述命题,相应的等比数列有性质:若数列{an}是等比数列 数列Cn=Bn*An,Bn是等差数列,An是等比数列,怎么求Cn的前n项和? 正整数列{an},{bn}满足对任意正整数n,an、bn、an+1成等差数列,bn、an+1、bn+1成等比数列,证明:数列{根号bn}成等差数列 数列an的前n项和为Sn,a1=1/4且Sn=Sn-1+an-1+1/2(n-1为下标)数列bn满足b1=-119/4,3bn-bn-1=n 求an通项公式,证:数列bn-an是等比数列,bn前n项和Tn的最小值数列an不一定是等差数列~~