若在约束条件3x-y-6≤0,x-y+2≥0,x≥0,y≥0下,目标函数z=ax+by设x,y满足约束条件3x-y-6≤0,x-y+2≥0,x≥0 y≥0.若目标函数z=ax+by(a>0,b>0)的最大值为12,给出下列四个判断;1、ab≤3/2;2、2/a+3/b≥25/6;

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 23:35:24
若在约束条件3x-y-6≤0,x-y+2≥0,x≥0,y≥0下,目标函数z=ax+by设x,y满足约束条件3x-y-6≤0,x-y+2≥0,x≥0 y≥0.若目标函数z=ax+by(a>0,b>0)的最大值为12,给出下列四个判断;1、ab≤3/2;2、2/a+3/b≥25/6;
xSn@~6YQkv *$CZ(-B )VmZ%xp+0B*zoϺ^!˻q{'TJ-윑\&b=2p+=6WPDE 9C9:nt&( ݠAmtbT.GYͶQْm#Ma \@Qbap1k;׾bf* Ɔsж*k°uKpGRxo/l&οĝR\m|_x–HGoeaK\ks~mUVɨْ'&\: S V8 D OsѤ³'?OR;!닲!/7W?uA S&ez=[6zjCʅd$hp1˺\ Fc6aI{ԵnQ9 cM 'djN?Ӹ ey%0jJi3ӘjD1_Tix=B 6ˮ $-fS;ca\j0 Haat$x2=3m>r]zTI˘稨W8#PF<(rsw׏J.^VCt|K^ '

若在约束条件3x-y-6≤0,x-y+2≥0,x≥0,y≥0下,目标函数z=ax+by设x,y满足约束条件3x-y-6≤0,x-y+2≥0,x≥0 y≥0.若目标函数z=ax+by(a>0,b>0)的最大值为12,给出下列四个判断;1、ab≤3/2;2、2/a+3/b≥25/6;
若在约束条件3x-y-6≤0,x-y+2≥0,x≥0,y≥0下,目标函数z=ax+by
设x,y满足约束条件3x-y-6≤0,x-y+2≥0,x≥0 y≥0.若目标函数z=ax+by(a>0,b>0)的最大值为12,给出下列四个判断;
1、ab≤3/2;2、2/a+3/b≥25/6;3、(a^2+b^2)min=4;4、1/4<(b+1)/(a+1)<3
第二个已经知道怎么判断了,就是剩下的三个不知道,

若在约束条件3x-y-6≤0,x-y+2≥0,x≥0,y≥0下,目标函数z=ax+by设x,y满足约束条件3x-y-6≤0,x-y+2≥0,x≥0 y≥0.若目标函数z=ax+by(a>0,b>0)的最大值为12,给出下列四个判断;1、ab≤3/2;2、2/a+3/b≥25/6;
可行域是四边形OABC,其中O是原点,A是(2,0),B是(4,6),C是(0,2),
目标函数z=ax+by(a>0,b>0)的最大值为12,是在B处取得,
∴4a+6b=12,
1.6=2a+3b>=2√(2a*3b)=2√(6ab),
平方得36>=24ab,
∴02.2/a+3/b=(2/a+3/b)(2a+3b)/6=(4+6a/b+6b/a+9)/6>=(13+12)/6=25/6.
3.原点到直线2x+3y-6=0的距离d=6/√13,
∴(a^2+b^2)|min=d^2=36/13.
原来的答案不对.
4.设k=(b+1)/(a+1),则b=k(a+1)-1,
代入2a+3b=6得2a+3k(a+1)-3=6,
∴k=(9-2a)/[3(a+1)]=3-11a/[3(a+1)]<3(a>0),
(9-2a)/[3(a+1)]>1/4,
<==>4(9-2a)>3(a+1),
<==>36-8a>3a+3,
<==>33>11a,
<==>a<3,
由2a+3b=6及b>0可得a<3.