1/(x+1)(x+2)+1/(x+2)(x+3)+1/(x+3)(x+4)+...+1/(x+2008)(x+2009)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/26 16:51:14
1/(x+1)(x+2)+1/(x+2)(x+3)+1/(x+3)(x+4)+...+1/(x+2008)(x+2009)
x)3ר6F`c 8&zzzPY MmiTO v6 P3tc,]0c Pdb4H]R3b,O$An)f6h>A6[NW͏v[Ey

1/(x+1)(x+2)+1/(x+2)(x+3)+1/(x+3)(x+4)+...+1/(x+2008)(x+2009)
1/(x+1)(x+2)+1/(x+2)(x+3)+1/(x+3)(x+4)+...+1/(x+2008)(x+2009)

1/(x+1)(x+2)+1/(x+2)(x+3)+1/(x+3)(x+4)+...+1/(x+2008)(x+2009)
1/(x+1)(x+2)+1/(x+2)(x+3)+1/(x+3)(x+4)+...+1/(x+2008)(x+2009)
=[1/(x+1)-1/(x+2)]+[1/(x+2)-1/(x+3)]+[1/(x+3)-1/(x+4)]+...+[1/(x+2008)-1/(x+2009)]
=1/(x+1)-1/(x+2009)

=1/(x+1)-1/(x+2)+1/(x+2)-1/(x+3)+1/(x+3)-1/(x+4)+...+1/(x+2008)-1/(x+2009)
=1/(x+1)-1/(x+2009)


1/(x+1)-/1(x+2)+1/(x+2)-1/(x+3)+……+1/(x+2008)-1/(x+2009) =1/(x+1)-1/(x+2009)