已知sinq-cosq=√2,求sin∧4q+cos∧4q=
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/25 01:47:54
x){}K3
umu2y (cI6P̰I*'E~
?
R~O/H=sulyE3(*r䠆@-b!D L#
0&oU&2+۱MCQt߳pTU؍ Rf<;P !T
已知sinq-cosq=√2,求sin∧4q+cos∧4q=
已知sinq-cosq=√2,求sin∧4q+cos∧4q=
已知sinq-cosq=√2,求sin∧4q+cos∧4q=
∵sinq-cosq=√2,∴(sinq-cosq)^2=2,∴(sinq)^2+(cosq)^2-2sinqcosq=2,
∴1-2sinqcosq=2,∴2sinqcosq=-1,∴4(sinqcosq)^2=1,∴2(sinqcosq)^2=1/2.
∴(sinq)^4+(cosq)^4
=[(sinq)^4+2(sinqcosq)^2+(cosq)^4]-2(sinqcosq)
=[(sinq)^2+(cosq)^2]^2-1/2=1-1/2=1/2.