不等式证明设a,b,c为正数求证:1/(a^3+b^3+abc)+1/(b^3+c^3+abc)+1/(a^3+c^3+abc)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 03:17:15
不等式证明设a,b,c为正数求证:1/(a^3+b^3+abc)+1/(b^3+c^3+abc)+1/(a^3+c^3+abc)
xPAN0N-EW;Od^9H4p zT85 ':v%GCRUf5?b˱4k7to:?)3>.L0O0:\tow+7Y|^7~-`ggEHF=v9k+x'a{;>W 8\1a͠5+Ua=(Lse;)ͺ6K!BU\_!+7ɏP ԰H LcBO# ICAy} ZġS /"

不等式证明设a,b,c为正数求证:1/(a^3+b^3+abc)+1/(b^3+c^3+abc)+1/(a^3+c^3+abc)
不等式证明设a,b,c为正数求证:1/(a^3+b^3+abc)+1/(b^3+c^3+abc)+1/(a^3+c^3+abc)

不等式证明设a,b,c为正数求证:1/(a^3+b^3+abc)+1/(b^3+c^3+abc)+1/(a^3+c^3+abc)
根据齐次性:不妨设abc=1,则
左边=1/(a^3+b^3+1)+1/(b^3+c^3+1)+1/(a^3+c^3+1)
而p=a^3,q=b^3,r=c^3
==>pqr=1,而且原式等于价于证明:1/(p+q+1)+1/(q+r+1)+1/(r+p+1)

1/(a^3+b^3+abc)+1/(b^3+c^3+abc)+1/(a^3+c^3+abc)
<=1/(a^2b+ab^2+abc)+1/(b^2c+bc^2+abc)+1/(a^2c+ac^2+abc)
=1/(ab(a+b+c))+1/(bc(a+b+c))+1/(ca(a+b+c))
=(1/(a+b+c))*(1/(ab)+1/(bc)+1/(ca))
=(1/(a+b+c))*(a+b+c)/(abc)
=1/(abc)