y=x和y=x²围成的面积用定积分算,

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 01:29:00
y=x和y=x²围成的面积用定积分算,
xTQOP+ k7xaԴ]˦&X 1"S4eHBPh†Scݶ{_lwEM j,|νg'}c$-:A7?U㽫yk{t -|ܘEmA_͡Ų{izj]<!x sT= | xg

y=x和y=x²围成的面积用定积分算,
y=x和y=x²围成的面积用定积分算,

y=x和y=x²围成的面积用定积分算,
先求交点:(0,0)(1,1)
那么,直接求差积分(差几分就是范围面积):
∫【0,1】(x-x^2)dx //【】内的是积分范围
=x^2/2-x^3/3 |(0,1)
=1/2-1/3
=1/6

x=y²,写成函数关系式比较麻烦
所以,做这样一个出来
将x,y调换
直线 x=y-2, 曲线y=x²
即直线 y=x+2,曲线 y=x²
交点是(-1,1),(2,2)
所以面积,即定积分
∫[-1,2] (x+2-x²)dx
=(x²/2+2x-x³/3)| [-1...

全部展开

x=y²,写成函数关系式比较麻烦
所以,做这样一个出来
将x,y调换
直线 x=y-2, 曲线y=x²
即直线 y=x+2,曲线 y=x²
交点是(-1,1),(2,2)
所以面积,即定积分
∫[-1,2] (x+2-x²)dx
=(x²/2+2x-x³/3)| [-1,2]
=(4/2+4-8/3) -(1/2-2+1/3)
=10/3-(-7/6)
=27/6

收起

不用定积分试试:y=x和y=x²围成的面积=1/6. 

请看: