已知x+y+z=π,证明sin(x+y)+sin(y+z)+sin(z+x)≥sin2x+sin2y+sin2z
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 08:51:49
x){}K++l7XlF_qfPHS @U:F J0YeTOsl';z|i'Ov3,iomgb i
$c55*<$=F0w&kTQ[傜
BubhBՃٌ}[<[?ˀ|~<;Px X
已知x+y+z=π,证明sin(x+y)+sin(y+z)+sin(z+x)≥sin2x+sin2y+sin2z
已知x+y+z=π,证明sin(x+y)+sin(y+z)+sin(z+x)≥sin2x+sin2y+sin2z
已知x+y+z=π,证明sin(x+y)+sin(y+z)+sin(z+x)≥sin2x+sin2y+sin2z
不等式右侧等于:
1/2[2sin2x+2sin2y+2sin2z]
=1/2[(sin2x+sin2y)+(sin2y+sin2z)+(sin2x+sin2z)]
=1/2[2sin(x+y)cos(x-y)+2sin(y+z)(y-z)+2sin(z+x)(y-z)]
=sin(x+y)cos(x-y)+sin(y+z)(y-z)+sin(z+x)(y-z)
显然,比不等式左侧要小
已知x+y+z=π,证明sin(x+y)+sin(y+z)+sin(z+x)≥sin2x+sin2y+sin2z
三角不等式证明证明sin(x+y)+sin(y+z)+sin(z+x)>sinx+siny+sinz+sin(x+y+z)
已知(x+y+z)^2=x^2+y^2+z^2,证明x(y+z)+y(z+x)+z(x+y)=0
已知整数x,y,z满足(x-y)(y-z)(z-x)=x+y+z,证明:x+y+z是27的倍数
证明sinx+siny+sinz-sin(x+y+z)=4sin((x+y)/2)sin((x+y)/2)sin((x+y)/2)
帮忙解道题 ,已知x+1/y=y+1/z=z+1/x ,证明x+y+z=1
证明x-(y-z)=x-y+z
证明sin(x+y)sin(x-y)=sinx-siny
已知 x/(y+z)+y/(z+x)+z/(x+y)=1求 (x*x)/(y+z)+(y*y)/(x+z)+(z*z)/(x+y)=?
若z=x+iy,试证明|sin²z|=sin²x+sh²y
2sin(2+2y-3z)=x+2y-3z,证明δz/δx+δz/δy=1
已知三个正实数x y z,且x+y+z=1,证明(x^2+y^2+z^2)(z/(x+y)+x/(y+z)+y/(z+x))>=1/2
已知 x,y,z都是正实数,且 x+y+z=xyz 证明 (y+x)/z+(y+z)/x+(z+x)/y≥2(1/x+1/y+1/z)^2
试证明(x+y-2z)+(y+z-2x)+(z+x-2y)=3(x+y-2z)(y+z-2x)(z+x-2y)
用行列式的性质证明:y+z z+x x+y x y z x+y y+z z+x =2 z x y z+x x+y y+z y z x 这个怎么证?
求全微分z=e^[sin(x+y)]*y^x
证明x*x*x+y*y*y=z*z*z(x.y.z为正整数)不成立.
证明 :x/(y+z)+y/(z+x)+z/(x+y)>=3/2其中 x,y,z>0