用数列极限证明lim(n^2+n+1)/(2n^2+1)=1/2

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 14:39:25
用数列极限证明lim(n^2+n+1)/(2n^2+1)=1/2
x){>eųvL6 /7>їgmabj$铪EΆ,{dWߓݻjg|{mnbɹ{'= ̫4Vhl XҶ,dm bGB H {:ڞhښI<;_܋w

用数列极限证明lim(n^2+n+1)/(2n^2+1)=1/2
用数列极限证明lim(n^2+n+1)/(2n^2+1)=1/2

用数列极限证明lim(n^2+n+1)/(2n^2+1)=1/2
对于任意ε>0
令N=max(1,3/(4ε))
当n>N时
|(n^2+n+1)/(2n^2+1)-1/2|
=|2n^2+2n+2-2n^2-1|/[2(2n^2+1)]
=(2n+1)/[2(2n^2+1)]
分子2n+12(2n^2)=4n^2