数列{an}的通项为n,已知正数项{bn}满足bn=a^[(an)-1]记{bn}的前n项和为Tn,当an是am,ak的等差中项时,试比较Tam+Tak与2Tan的大小.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 18:51:48
数列{an}的通项为n,已知正数项{bn}满足bn=a^[(an)-1]记{bn}的前n项和为Tn,当an是am,ak的等差中项时,试比较Tam+Tak与2Tan的大小.
xTn@~fϘrB1d&RQ IU(5*6`wi=ks:uiڞsz曙oSYk 囕}ޜ*~ ?h+}ecG"Tw{0:E=/ޏwxTF-6jFߪ%beJ SD(ø+_OZ)zթӱE/fk4_^1Bsxv9]'~J^D.`ek$]ʠEYNPz1h8ÌI8*Y"E/f^DwNa:.]@n5_՛&I2>"U<5֙AÍ+၌D'o%yHQMf spxDq$2UOXX|H•8(f9H}]!,c!~0J8h,@ 57mQ\5Tqb X3өs[?w_69.δA>ȝх$ ޮ0iolbU7ٙ>f|^+pzg& IeU__YBe}Ys}uS_Em

数列{an}的通项为n,已知正数项{bn}满足bn=a^[(an)-1]记{bn}的前n项和为Tn,当an是am,ak的等差中项时,试比较Tam+Tak与2Tan的大小.
数列{an}的通项为n,已知正数项{bn}满足bn=a^[(an)-1]记{bn}的前n项和为Tn,当an是am,ak的等差中项时,试比较Tam+Tak与2Tan的大小.

数列{an}的通项为n,已知正数项{bn}满足bn=a^[(an)-1]记{bn}的前n项和为Tn,当an是am,ak的等差中项时,试比较Tam+Tak与2Tan的大小.
因为an=n
所以bn=a^(n-1)(可以理解为首项为1,a为公比的等比数列)
因为am+ak=2an
所以m+k=2n
Tam+Tak-2Tan=(2a^n-(a^m+a^k))/(1-a)(这一步你自己算吧!这样写太麻烦)
a^m+a^k大于等于2根号(a^(m+k))
m+k=2n
所以a^m+a^k大于2a^n(m不可能等于k,因此不可能取到等号)
即2a^n-(a^m+a^k)小于0
所以当a小于1时,Tam+Tak小于2Tan
当a大于1时,Tam+Tak大于2Tan

bn=a^[(an)-1]=a^(n-1) (等比数列)
Tn=a(1-a^n)/(1-a)
an=n,am=m,ak=k.且m+k=2n (等差中项)
Tam+Tak=a(2-a^m-a^k)/(1-a)
2Tan=a(2-2a^n)/(1-a)
比较Tam+Tak与2Tan的大小,就是比较2-a^m-a^k与2-2a^n的大小
即比较2a^n与a...

全部展开

bn=a^[(an)-1]=a^(n-1) (等比数列)
Tn=a(1-a^n)/(1-a)
an=n,am=m,ak=k.且m+k=2n (等差中项)
Tam+Tak=a(2-a^m-a^k)/(1-a)
2Tan=a(2-2a^n)/(1-a)
比较Tam+Tak与2Tan的大小,就是比较2-a^m-a^k与2-2a^n的大小
即比较2a^n与a^m+a^k的大小。
根据均值不等式,a^m+a^k≥2根号(a^m*a^k)=2a^((m+k)/2)=2a^n
所以Tam+Tak≥2Tan

收起

已知数列{an}是公差为正数的等差数列,数列{bn}是首相为1的等比数列,设cn=an×bn,且数列﹛cn﹜的前三项依为1,4,12.﹙1﹚求数列{an},{bn}的通项公式;﹙2﹚若数列{an}的前n项和为Sn,求数列﹛Sn/n﹜ 已知数列an的前n项和Sn=n平方+2n.若各项均为正数的等比数列bn满足b2=S1.题没打完、b4=a2+a3则数列bn的通项bn= 设数列an的各项都为正数,其前n项和为sn,已知对其任意n属于N*,sn是an^2和an的等差中项.(1)证明数列an为等差数列,并求数列an的通项公式(2)数列bn的通项bn=(2an+1)/2^n(2)数列bn的通项bn=(2an+1 数列an,bn各项均为正数,a1=1,b1=2,a2=3,对任意n,an,bn,an+1成等差数列,bn,an+1,bn+1成等比数列,求an,bn的通项公式 已知各项均为正数的等比数列an满足a2=8,a3+a4=48 1.求数列an的通项公式 2.设bn=log4an,求数列bn的前n项和Tn 已知数列{an}的各项均为正数,其前n项和为Sn.且满足2Sn=an^2+an(n∈N*).求数列an的通项公式若bn=n(1/2)^an,求数列{bn}的前n项和Tn.非常急,求能人十分钟内解答 设正数数列{an}的前n项之和为bn,数列{bn}的前n项之和为cn,且bn+cn=1,求|c100-a100|. 已知正数数列{an},其前n项和Sn满足10Sn=an^2+5an+6,且a1,a3,a15成等比数列,(1)求数列{an}的通项(通项为an=5n-3) (2)设bn=2/[an*a(n+1)],Sn是数列{bn}的前n项和,求使Sn 已知数列{an}的各项均为正数,它的前n项和Sn满足Sn=1/6【(an)+1)】【(an)+2】,并且a2,a4,a9成等比数列.1.求数列{an}的通项公式2.设bn=[(-1)^(n+1)]*an*an+1,Tn为数列{bn}的前n项和,求T2n 已知数列{an}的各项为正数,其前n项和和Sn=(an+1/2)∧2,设bn=10-an(n∈N))(1)求证:数列{an}是等差数列,并求{an}的通项公式(2)设数列{bn}的前n项和为Tn,求Tn的最大值大神告诉我答案吧 已知数列{an},{bn}是各项均为正数的等比数列设an=bn/an(n 已知等比数列{an}的各项均为不等于1的正数.数列{bn}满足bn=In an ,b3=18,b6=12,则数列{bn}前n项和的最大值为多少. 高中题目(在线等解答)急!要求详细步骤1,已知等比数列{An}的各项为不等于1的正数,数列{Bn}满足bn=2lgAn(n≥1且n∈N正整数),且b3=18,b6=12 求:(1),求证数列{bn}是等差数列(2),求数列{bn},{an}的通项公式2, 高一数学等比数列已知等比数列{an}的各项均为不等于1的正数,数列{bn}满足bn=ln an,b3=18. b6=12,则数列{bn}的前n项和的最大值等于? 已知等比数列an的各项均为不等于1的正数,数列bn满足bn=㏑an,b3=18,b6=12,则数列bn前n项和的最大值 已知各项均为正数的数列{an}的前项和为Sn,且Sn,an,1/2成等差数列.(1)求a1,a2的值;(2)求数列{an}的通项公式;(3) 若bn=4-2n(n∈N+),设Cn=bn/an,求数列{cn}的前n项和Tn 已知数列{an}是各项均为正数的等差数列,loga1,loga2,loga4成等差数列,记bn=1/a2n,(1)证明数列{bn}是等比数列.(2求数列{bn}的前n项和Sn. 已知数列an满足a1=a,an=an+1+2.定义数bn,bn=1/an n为正数 若4﹤a﹤6,则已知数列an满足a1=a,an=an+1+2.定义数bn,bn=1/an n为正数若4﹤a﹤6,则数列bn最大项的项数为