不动点法解数列的原理是什么?请问这个方法的原理是什么?为什么可以这么做?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/26 11:25:52
不动点法解数列的原理是什么?请问这个方法的原理是什么?为什么可以这么做?
xUN@~1(N}$dcRJ*D6چĦ tvNBgwmwCTTR|3lyz]&g>q7}G=<⁻'_= _m0u(ֵ/b7Vksꇨ}NF#f(]%Ν>բj% I@j ݒZ,kV ln~dY۫9 59>`URJ& >:u0 :N~~' =FeTlvTbI&yUJCgC|vZAt%s]FvRCMR6tׁ|r ag˵ZQ+e.1kM;y-g%rR#$gvEK* }& e֑\Μm ODW>4gT|*?9?CTE5s /il1柇. 4me}Z^D6hx*4zFOϢ ,Gh _b A1@f2dZFǤX"fKy0L{9 ^Gq' $%9Al] jA;7߲KKըɟ5jqo { *ӛ wa^IoijՆ'7|k

不动点法解数列的原理是什么?请问这个方法的原理是什么?为什么可以这么做?
不动点法解数列的原理是什么?
请问这个方法的原理是什么?为什么可以这么做?

不动点法解数列的原理是什么?请问这个方法的原理是什么?为什么可以这么做?
递推式:
a(n+1)=(A*an+B)/(C*an+D)
(n∈N*,A,B,C,D为常数,C不为0,AD-BC不为0,a1与a2不等)
其特征方程为x=(A*x+B)/(C*x+D)
特征方程的根称为该数列的不动点
这类递推式可转化为等差数列或等比数列
1)若x=(A*x+B)/(C*x+B)有两个不等的根α、β,则有:
(a(n+1)-α)/(a(n+1)-β)=k*((an-α)/(an-β))
其中k=(A-α*C)/(A-β*C)
x=(A*x+B)/(C*x+D)
C*x^2+(D-A)*x-B=0
α不等于β
(D-A)^2+4*B*C不等于0
C*α^2+(D-A)*α-B=0
C*α^2-A*α=B-α*D
a(n+1)-α=(A*an+B-C*α*an-α*D)/(C*an+D)=(A*an-C*α*an+C*α^2-A*α)/(C*an+D)=(A-C*α)*(an-α)/(C*an+D)
a(n+1)-β=(A*an+B-C*β*an-β*D)/(C*an+D)=(A*an-C*β*an+C*β^2-A*β)/(C*an+D)=(A-C*β)*(an-β)/(C*an+D)
(a(n+1)-α)/(a(n+1)-β)=(A-α*C)/(A-β*C)*((an-α)/(an-β))

(an-α)/(an-β)=((A-α*C)/(A-β*C))^(n-1)*((a1-α)/(a1-β))

an=(β*(((A-α*C)/(A-β*C))^(n-1))*((a1-α)/(a1-β))-α)/(((((A-α*C)/(A-β*C))^(n-1))*((a1-α)/(a1-β))-1)
2)若x=(A*x+B)/(C*x+B)有重根α,则有
1/(a(n+1)-α)=1/(an-α)+k
其中k=(2*C)/(A+D)
x=(A*x+B)/(C*x+D)
C*x^2+(D-A)*x-B=0
C*α^2+(D-A)*α-B=0
α=(A-D)/(2*C)
a(n+1)-α=(A-C*α)*(an-α)/(C*an+D)
1/(a(n+1)-α)=((C*an+D)/(A-C*α))*(1/(an-α))
=1/(an-α)+(C*an+D-A+((A-D)/(2*C))*C)/((A-(A-D)/(2*C)*C)*(an-(A-D)/(2*C)))=1/(an-α)+(C*an+C*(D-A)/(2*C))/(((A+D)/2)*(an+(D-A)/(2*C)))
=1/(an-α)+(2*C)/(A+D)

1/(an-α)=(2*C*(n-1))/(A+D)+1/(a1-α)
an=1/((2*C*(n-1))/(A+D)+1/(a1-α))+α
以上即是证明过程……
至于更进一步的原理,涉及到高等数学的知识,就不仔细解释了……