四边形ABCD中,AB=AC=AD,角DAC=2角BAC,求证角DBC=2角BDC

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 10:49:53
四边形ABCD中,AB=AC=AD,角DAC=2角BAC,求证角DBC=2角BDC
xU[NPJTb$z#q ` )&$P"hE u)?}8$PTɒq̙](.B};tbPbNU1x]\xK̨KA !W\, Cpd0P5t3x$͌k#^MX.s" ]Mԅ\~ Sɛ`]}1,d-;")BFi 2B!bpLLȘ2eb:Q$}YDɚLP>ȶܣ KK/r wWo !ߏ;Kл\tҁE}l^i<:xq̨A9jvAzFA a{4䞵O#\-s񈗆~ĂDtLV݀a  !ڂK43 N~v!X)?  g4[lWWY[ɂlGb3` 5=D`{6_g~m5;=v|K

四边形ABCD中,AB=AC=AD,角DAC=2角BAC,求证角DBC=2角BDC
四边形ABCD中,AB=AC=AD,角DAC=2角BAC,求证角DBC=2角BDC

四边形ABCD中,AB=AC=AD,角DAC=2角BAC,求证角DBC=2角BDC
我们设∠BAC=x° ∠CAD=2x 设∠ABD=y
∵在△ABD中 AB=AD
∴∠ADB=∠ABD=y=1/2(180-x-2x)=90-1.5x
又在△ABC中 AB=AC
∴∠ABC=∠ACB=1/2(180-x)=90-0.5x
又在△ACD中 AC=AD
∴∠ACD=∠ADC=1/2(180-2x)=90-x
∠DBC=∠ABC-∠ABD=90-0.5x-(90-1.5x)=x
∠BDC=∠ADC-∠ADB=90-x-(90-1.5x)=0.5x
∴∠DBC=2∠BDC

这要考虑你学到什么地步了……
用圆的知识,一步就出来:
因为AB=AC=AD所以
可以以A为圆心,AB的长为半径做圆
那么C D一定在圆上
于是角DAC,角BAC就是两个圆心角了……
注意到他们对的弧分别是劣弧CD和劣弧BC 并且角DAC=2角BAC
这个2倍关系非常重要
下一步:角BDC和角DBC是圆的两个圆周角
他们对的弧...

全部展开

这要考虑你学到什么地步了……
用圆的知识,一步就出来:
因为AB=AC=AD所以
可以以A为圆心,AB的长为半径做圆
那么C D一定在圆上
于是角DAC,角BAC就是两个圆心角了……
注意到他们对的弧分别是劣弧CD和劣弧BC 并且角DAC=2角BAC
这个2倍关系非常重要
下一步:角BDC和角DBC是圆的两个圆周角
他们对的弧分别是劣弧CD和劣弧BC
因为这两个劣弧所对的圆心角符合上面的比例关系(1:2)
所以他们对的圆周角也符合1:2的关系(考虑同弧所对的圆周角是圆心角的一半,也可以得到相同的结论)
所以角BDC:角DBC=1:2
整理得:角DBC=2角BDC

收起