如何证明相同周长的正方形的面积比矩形大?相同周长的正方形和矩形,面积应该是正方形大点吧?怎么证明?求证

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 11:30:11
如何证明相同周长的正方形的面积比矩形大?相同周长的正方形和矩形,面积应该是正方形大点吧?怎么证明?求证
x͒MN@ǯҥچe qIiQ.1lZ|W1q{ѫeP'nLJ!mq}s6gF\oB~;^QD8~N}^hۯGf:tDEUJSe,xA., lM9R]p[8IҬaȧ͔ey,C.v.Ee7Uò$Xf؎r P j e9l%GwdSC9+AA2'`'pFCt.6 [0ZI@x5A&QcR/-rZ~_

如何证明相同周长的正方形的面积比矩形大?相同周长的正方形和矩形,面积应该是正方形大点吧?怎么证明?求证
如何证明相同周长的正方形的面积比矩形大?
相同周长的正方形和矩形,面积应该是正方形大点吧?怎么证明?求证

如何证明相同周长的正方形的面积比矩形大?相同周长的正方形和矩形,面积应该是正方形大点吧?怎么证明?求证
设正方行边长为a,面积为S1,矩形的长为b,宽为c,面积为S2
因为正方形与矩形的周长相等
所以4a=2(b+c)
所以a=1/2(b+c)
因为S1=aa S2=bc
所以S1=1/4(b+c)平方
化简得:S1=1/4b平方+1/2bc+1/4c平方
所以S1-S2得:1/4b平方+1/2bc+1/4c平方-bc
=1/4b平方-1/2bc+1/4c平方
=1/4(b平方-2bc+c平方)
=1/4(b-c)平方
因为b不等于c
所以1/4(b-c)平方 大于0
即 S1-S2 大于0
所以正方形面积大于矩形面积