已知函数y=cos2x+sin^2-cosx.求最大值与最小值

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 11:31:34
已知函数y=cos2x+sin^2-cosx.求最大值与最小值
x){}K}6uCmr~Qvqf^.]lcӳ9 O,ڰɎ>{C?mTO^;lA"DVC_PD! ! H( 5/.H̳zAF&4[# .C=tيJy1QGG!c tOm 1 |ֻɮgkB}/6.|ڿ {'#l6 ] 7bH

已知函数y=cos2x+sin^2-cosx.求最大值与最小值
已知函数y=cos2x+sin^2-cosx.求最大值与最小值

已知函数y=cos2x+sin^2-cosx.求最大值与最小值
cos2x=cos^2-sin^2
cos2x+sin^2-cosx
=cos^2-sin^2+sin^2-cosx
=cos^2-cosx
=cos^2-cosx+1/4-1/4
=(cosx-1/2)^2-1/4
-1

y=cos2x+sin^2(x)-cosx=2cos^2(x)-1+1-cos^2(x)-cosx=cos^2(x)-cosx.不妨设cosx=t,则t∈[-1,1],原式=t^2-t,根据二次函数图象可知,当t∈[-1,1]时,y∈[-1/4,2]