抛物线y^=4x的焦点是f,过点m(-1,0)的直线在第一象限交与a,b两点,且满足向量af*向量bf=0则ab的斜率

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 06:01:38
抛物线y^=4x的焦点是f,过点m(-1,0)的直线在第一象限交与a,b两点,且满足向量af*向量bf=0则ab的斜率
x͒j@_Kc . 7}!Yi7[cKՂz"^jZ(e&|8"}73Kz&גTt+2KMkmԭ[ z_0S11/Aɜ:2= bv[ O| QTnut@^/Քq8R:u,lԊ !s@A((F&p(DA;$z޳Րߌ8bN

抛物线y^=4x的焦点是f,过点m(-1,0)的直线在第一象限交与a,b两点,且满足向量af*向量bf=0则ab的斜率
抛物线y^=4x的焦点是f,过点m(-1,0)的直线在第一象限交与a,b两点,且满足向量af*向量bf=0则ab的斜率

抛物线y^=4x的焦点是f,过点m(-1,0)的直线在第一象限交与a,b两点,且满足向量af*向量bf=0则ab的斜率
设直线为y=k(x+1),交抛物线于第一象限的A,B点,A(x1,y1),B(x2,y2),
直线方程代入抛物线方程得k^2x^2+(2k^2-4)x+k^2=0 (1)
又由向量FA*FB=0,得(x1-1,y1)*(x2-1,y2)=0 (2)
(1)式由韦达定理得x1+x2,x1*x2,代入(2)式解得
K^2=1/2
所以k=±√2/2
直线过第一象限,选正值.

几道抛物线数学题1,抛物线y=x^2上的点到直线2x-y-4=0的距离最短的点的坐标是?2,抛物线x^2=-2py(p>0)上一点P(m,-2)到其焦点F的距离为4,则m的值为?3,过抛物线y^2=2px(p>0)的焦点作直线交抛物线于A(x1,y 抛物线y^=4x的焦点是f,过点m(-1,0)的直线在第一象限交与a,b两点,且满足向量af*向量bf=0则ab的斜率 过抛物线y方=4x的焦点F作直线与抛物线交于点A,B.求线段AB的中点M的轨迹方程. 设F抛物线y^2=4x的焦点,过点F作直线交抛物线于MN两点,则三角形MON的面积最小值是 已知抛物线x^2=2y,F是抛物线的焦点,过点F的直线L与抛物线相交于A、B两点,分别过A、B作抛物线L1、L2,记L1和L2相交于点M.1.证明L1⊥L22、求点M的轨迹方程已知抛物线x^2=2y,F是抛物线的焦点,过点F的 F是抛物线y=1/4x^2的焦点,若抛物线任意点p到直线Y=M的距离比点P到F的距离多1,求M=? 求简单轨迹方程设过抛物线Y^2=4X的焦点F的直线交抛物线于A,B两点,且AB的中点为M,则点M的轨迹方程是? 已知点P(3,m)是抛物线y^2=4x上的点,则P到抛物线焦点F的距离、求过程、谢谢、、 已知抛物线以x轴为准线 且恒过点m(0,2) 则抛物线焦点F的轨迹方程是?x^2+(y-2)^2=4 为什么 F是抛物线y=4x的焦点 P是抛物线一定点(3.1) M是抛物线一动点,求|MP|+|MF|F是抛物线y=4x的焦点 P是抛物线一定点(3.1) M是抛物线一动点,求|MP|+|MF|最小值 [数学]有关抛物线的问题设过抛物线y^2=4x 的焦点F的直线交抛物线于A、B两点,且 中点为M,则点M的轨迹方程是_________________.答案是y^2=2(x-1)请问怎么推出来的 设F是抛物线G:x方=4y的焦点,过点P(0,4)作抛物线G的切点,求切线方程 圆M:x=1+cosθ y=sinθ 的圆心F是抛物线 E:x=2pt² y=2pt的焦点过焦点F的直线交抛物线E于AB两点 求圆M:x=1+cosθ y=sinθ 的圆心F是抛物线 E:x=2pt² y=2pt的焦点过焦点F的直线交抛物线E于AB两点 求 M为抛物线y^2=4x上的动点,F是焦点,P是定点(3,1).求|MP|+|MF|的最小值 若抛物线x=-4y²上一点m到焦点f的距离为1则m点的横坐标是多少 设F是抛物线C:y^2=4x的焦点,过点A(-1,0)斜率为k的直线与C相交M,N两点 (1)设设F是抛物线C:y^2=4x的焦点,过点A(-1,0)斜率为k的直线与C相交M,N两点 (1)设向量FM与向量FN的夹角为120度,求k的值 抛物线x^2=4y 的焦点为F,过点(0,-1)作直线L交抛物线A、B两点,求AB中点的轨迹方程我算的是y=x^2/2+x/2 过抛物线y^2=8x的焦点F的直线交抛物线于A、B两点,过原点O作OM⊥AB,垂足为M,则点M的轨迹方程是