题1:在三角型ABC 中,角 A,B,C 的对边分别为 a,b,c,,若 b- (1/2) c= a cosC ,则 A =( ).题2:在三角型ABC 中,D 为边 BC 上的一点,BD = (1/2 ) DC ,角 ADB = 120度 ,AD =2 ,若三角型 ADC 的面积为 3-√3 ,则∠ BAC为?题3:

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 07:40:34
题1:在三角型ABC 中,角 A,B,C 的对边分别为 a,b,c,,若 b- (1/2) c= a cosC ,则 A =( ).题2:在三角型ABC 中,D 为边 BC 上的一点,BD = (1/2 ) DC ,角 ADB = 120度 ,AD =2 ,若三角型 ADC 的面积为 3-√3 ,则∠ BAC为?题3:
xTNA~LnvBfw&mA"\wi bEDʅR;rWݺJILhݙo=sRc[k}QkU˝E1-Z} w5K>)k(MV-43((Tșq4QzLnc_ueZbiM0%( Xh4X\?1bzf{H$fi=!4K`q#H(R'/Eҕe@תE@qB> ,4H@ENFVb{WHJNݶ!IF4,,3G/_1_S|}qx,ocmPQpҥh42ūf9!MH uRܹ{cC_ ^ >(KO%j1ᶩ8<"fQUW(?TGlˆА inwTBmCȬ p7k܁x[w+Zչ~Y42MfyeL螢c0_n/zSdؖx+= [)KoS<ЈF\+ˤz*WDcrv%omӌ,J~9hDĂ ӓD (*8}|,3:O,kP/7A]iT8AS6z/5m<[q4Q!bS{e(*u]cnrL dL@1!W/Ǡc{PAѧݥא

题1:在三角型ABC 中,角 A,B,C 的对边分别为 a,b,c,,若 b- (1/2) c= a cosC ,则 A =( ).题2:在三角型ABC 中,D 为边 BC 上的一点,BD = (1/2 ) DC ,角 ADB = 120度 ,AD =2 ,若三角型 ADC 的面积为 3-√3 ,则∠ BAC为?题3:
题1:在三角型ABC 中,角 A,B,C 的对边分别为 a,b,c,
,若 b- (1/2) c= a cosC ,则 A =( ).
题2:在三角型ABC 中,D 为边 BC 上的一点,BD = (1/2 ) DC ,
角 ADB = 120度 ,AD =2 ,若三角型 ADC 的面积为 3-√3 ,则∠ BAC为?
题3:设x,y 为实数,若4 x^ 2+ y^2 +xy = 1 则 2x + y 的最大值是?

题1:在三角型ABC 中,角 A,B,C 的对边分别为 a,b,c,,若 b- (1/2) c= a cosC ,则 A =( ).题2:在三角型ABC 中,D 为边 BC 上的一点,BD = (1/2 ) DC ,角 ADB = 120度 ,AD =2 ,若三角型 ADC 的面积为 3-√3 ,则∠ BAC为?题3:
题1
∵a/sinA=b/sinB=c/sinC
∴b- (1/2) c= a cosC
∵sinB-(1/2)sinC=sinAcosC
∴sin(A+C)-(1/2)sinC=sinAcosC+sinCcosA-(1/2)sinC=sinAcosC+sinC(cosA-1/2)=sinAcosC
∴sinC(cosA-1/2)=0
∵sinC≠0 ∴cosA=1/2 ∴A=60°
题2
∵∠ ADB = 120°
∴∠ADC=60°
设BD=t ∴DC=2t
S△ADC=3-√3 =1/2AD•DC•sin∠ ADB =1/2﹡2﹡2t﹡√3/2
∴t=√3 -1 ∴cos∠DAC=(DA^2+DC^2-AC^2)/(2﹡AD•DC) =1/2解得AC=3√2-√6
同理AB=√6
cos∠ BAC=(AB^2+AC^2-BC^2)/(2﹡AB•AC)=1/2
∴∠ BAC=60°
题3
根据基本不等式:a^2+b^2≥2ab
∴4 x^ 2+ y^2≥4xy
4 x^ 2+ y^2 +xy≥5xy
∴5xy≤1 ∴xy≤1/5 "="有且仅当x=√10/10,y=√10/5时取到
2x + y =√(2x + y)^2=√(4 x^ 2+ y^2+4xy)=√(1+3xy)≤(2/5)√10
∴2x + y 的最大值是(2/5)√10

1.b-1/2c=acosC→sinB-1/2sinC=asinC→sin(A C)-1/2sinC=asinC→sincCcosA=1/2sinC→因为sinC不等于0→cosA=1/2,ㄥA=60°
∵∠ ADB = 120°
∴∠ADC=60°
设BD=t ∴DC=2t
S△ADC=3-√3 =1/2AD•DC•si...

全部展开

1.b-1/2c=acosC→sinB-1/2sinC=asinC→sin(A C)-1/2sinC=asinC→sincCcosA=1/2sinC→因为sinC不等于0→cosA=1/2,ㄥA=60°
∵∠ ADB = 120°
∴∠ADC=60°
设BD=t ∴DC=2t
S△ADC=3-√3 =1/2AD•DC•sin∠ ADB =1/2﹡2﹡2t﹡√3/2
∴t=√3 -1 ∴cos∠DAC=(DA^2 DC^2-AC^2)/(2﹡AD•DC) =1/2解得AC=3√2-√6
同理AB=√6
cos∠ BAC=(AB^2 AC^2-BC^2)/(2﹡AB•AC)=1/2
∴∠ BAC=60°
题3
根据基本不等式:a^2 b^2≥2ab
∴4 x^ 2 y^2≥4xy
4 x^ 2 y^2 xy≥5xy
∴5xy≤1 ∴xy≤1/5 "="有且仅当x=√10/10,y=√10/5时取到
2x y =√(2x y)^2=√(4 x^ 2 y^2 4xy)=√(1 3xy)≤(2/5)√10

收起