四棱锥P-ABCD的底面是矩形,PA⊥平面ABCD,E,F分别是AB,PD的中点,又二面角P-CD-B为45°,设AD=2,CD=2√2求点A到平面PEC的距离
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/24 17:21:19
x͑J@_dž &*+ "VDAZRĚmZ|ɴg&-J7&7yv&gӉMQ?.^#k!FFBQE< b#&ߤgirV?c4ngͬ8\
cݦXۻ_R~%=VU˪ RYed|#,0UU ޮtXU aC42N>u\:#c~ ڄx
mp}",3n05F
Xf$ TL-k<.ZƞS?ro
四棱锥P-ABCD的底面是矩形,PA⊥平面ABCD,E,F分别是AB,PD的中点,又二面角P-CD-B为45°,设AD=2,CD=2√2求点A到平面PEC的距离
四棱锥P-ABCD的底面是矩形,PA⊥平面ABCD,E,F分别是AB,PD的中点,又二面角P-CD-B为45°,
设AD=2,CD=2√2求点A到平面PEC的距离
四棱锥P-ABCD的底面是矩形,PA⊥平面ABCD,E,F分别是AB,PD的中点,又二面角P-CD-B为45°,设AD=2,CD=2√2求点A到平面PEC的距离
PA⊥平面ABCD
所以PA⊥CD
ABCD的底面是矩形,AD⊥CD
PD⊥CD(三垂线定理)
CD⊥AD
所以二面角P-CD-B=角PDA=45°
PA=2,PE=根号6,PC=4,EC=根号6
现在设点A到平面PEC的距离为h
V(P-AEC)=V(A-PEC)
1/2*PA*S(AEC)=1/2*h*S(PEC)
2*2*根号2=4*根号2*h
h=1
已知四棱锥P-ABCD的底面ABCD是平行四边形且PA⊥底面ABCD,如果BC⊥PB,求证ABCD是矩形用向量方法
如图所示 四棱锥P-ABCD中 底面ABCD是矩形 PA⊥平面ABCD M . N 分别是AB. PC 的中点 ,PA=AD=a
如图,已知四棱锥P-ABCD的底面ABCD是平行四边形,且PA⊥底面AC,如果 BC⊥PB,求证ABCD是矩形
在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,指出哪些三角形是直角三角形?
如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥底面ABCD,E是PC的中点, 如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥底面ABCD,E是PC的中点,已知AB=2,AD=2√2,PA=2,建立空间直角坐标系如何求E点的坐标,
在四棱锥P-ABCD中,底面ABCD是矩形,且PA⊥平面ABCD.那么这个四棱锥中是有4个直角三角形,如何证明
如图,在底面是矩形的四棱锥P-ABCD中,PA⊥面ABCD,E,F分别为PD,AB的中点,且PA=AB=1,BC=2.求四棱锥E-ABCD的体积
如图,四棱锥P-ABCD的底面为矩形,PA⊥底面ABCD,PA=AD,M为AB的中点,求证:平面PMC⊥平面PCD.
四棱锥P-ABCD的底面为矩形,PA⊥底面ABCD,PA=AD,M为AB的中点,求证:平面PMC⊥平如题
已知四棱锥P-ABCD中,底面ABCD是矩形,PA⊥底面ABCD,PA=3,AB=2,BC=√3,则二面角P-BD-A的正切值为
四棱锥P-ABCD的底面是面积为9的矩形,PA⊥平面ABCD,侧面PBC、侧面PDC与底面所成的角分别是60°和30°,求求四棱锥的全面积
已知四棱锥P-ABCD,底面ABCD是矩形,AB=1,BC=a,PA=1PA⊥面ABCD
如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥底面ABCD,PA=AB= 跟号6 ,点E是棱PB的中点.求点D到平面PBC的距离;
如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥底面ABCD,PA =AB,点E是棱PB的中点.求证:AE⊥PC
如图 四棱锥P-ABCD中 底面ABCD为矩形 PA⊥底面ABCD PA=AB 点E是棱PB的中点 求AE⊥PC
如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥底面ABCD,PA =AB,点E是棱PB的中点.求证:AE⊥PC
如图 四棱锥P-ABCD中 底面ABCD为矩形 PA⊥底面ABCD PA=AB 点E是棱PB的中点 求AE⊥PC
在四棱锥P-ABCD中,底面ABCD为矩形,PA⊥底面ABCD,PA=AB=根号6,点E是棱PB的中点(1)求直线AD与平面PBC在四棱锥P-ABCD中,底面ABCD为矩形,PA⊥底面ABCD,PA=AB=根号6,点E是棱PB的中点(1)求直线AD与平面PBC的