已知:△ABC中,AB=AC,∠B=30°,BF=2,AB 的垂直平分线EF交AB于E,交BC于F,求CF的长.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 14:24:08
已知:△ABC中,AB=AC,∠B=30°,BF=2,AB 的垂直平分线EF交AB于E,交BC于F,求CF的长.
xTmOP+ d/֬$7Lml*l2n H0/DE 2C'd]':Đ>,=/y{ι7EclJh'Hd(҆,t/('e͙fY;0KIBm?Y_Ll**$c}-8e i({~!0eHC N3|&7+u-6rL6a6#4!,F1J!#jHNZOpNiGj1 = u1&ybm?(uo4*?6Duј[P%+՝=EQ{B"d7 J3k$q"NQf ƕ~^g|dvK1`YDŽĕ(%6GMt:vFrpG^6BNkGb%Թɟ观5x}v3Tޜ(NC>fV6֋Qxv:JsB?kNZ}cGEs)$A-5m?6WFma-+yKgxcVeY+>+KKc(ޭ' }XE~j0

已知:△ABC中,AB=AC,∠B=30°,BF=2,AB 的垂直平分线EF交AB于E,交BC于F,求CF的长.
已知:△ABC中,AB=AC,∠B=30°,BF=2,AB 的垂直平分线EF交AB于E,交BC于F,求CF的长.

已知:△ABC中,AB=AC,∠B=30°,BF=2,AB 的垂直平分线EF交AB于E,交BC于F,求CF的长.
∵AB=AC
∴∠C=∠B
∵∠B=30
∴∠C=30
∵EF垂直平分AB
∴AF=BF
∴∠BAF=∠B=30
∴∠AFC=∠BAF+∠B=60
∴∠CAF=180-(∠AFC+∠C)=180-(60+30)=90
∴CF=2AF
∴CF=2BF
∵BF=2
∴CF=4

4

CF=4
解答过程
因为AB 的垂直平分线EF交AB于E
所以BE=AE ,∠BEF=90°
因为∠B=30° BF=2
所以BE=根号3 AC=AB二倍的根号3
做AD垂直BC于D 则BD=DC ∠ADC=90°
因为AB=AC
所以∠C=∠B=30°
所以DC=3
CF=DC+(BD-BF) =3+(3-2)=4

∵AB=AC,∠B=30°
∴∠B=∠C=30°
∴∠BAC=180°-∠B-∠C=180°-30°-30°=120°
∵EF为AB的垂直平分线
∴∠B=∠BAF=30° BF=AF=2
∴∠FAC=∠BAC-∠BAF=120°-30°=90°
∵∠C=30°,∠FAC=90°
根据直角三角形中30°角所对的边等于斜边的一半,
∴...

全部展开

∵AB=AC,∠B=30°
∴∠B=∠C=30°
∴∠BAC=180°-∠B-∠C=180°-30°-30°=120°
∵EF为AB的垂直平分线
∴∠B=∠BAF=30° BF=AF=2
∴∠FAC=∠BAC-∠BAF=120°-30°=90°
∵∠C=30°,∠FAC=90°
根据直角三角形中30°角所对的边等于斜边的一半,
∴CF=2AF=2×2=4
打符号累人啊!!!!!(吐槽,请忽略)

收起