1.求下列函数在给定区间上的最大值与最小值y=x^3-3x^2-9x-5 [-2,6]2.验证:不定积分∫xadx=(xa+1/a+1)+c (a≠-1)是对的.3.已知函数的导数为4x3,且x=0时,y=-2,求这个函数.4.已知物体做非匀速直线运动,在t时

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 15:42:28
1.求下列函数在给定区间上的最大值与最小值y=x^3-3x^2-9x-5 [-2,6]2.验证:不定积分∫xadx=(xa+1/a+1)+c (a≠-1)是对的.3.已知函数的导数为4x3,且x=0时,y=-2,求这个函数.4.已知物体做非匀速直线运动,在t时
xTN@kTb6|FE+PcUδ8@IUR R()-1mQ1y  3vi@eQ";qܗ|{{٠)n:m7J'8󽥰:ض{*s&)H're'ID+w~k \,\;_HD)J ?Qz&ו&`ӥ(BϿ{[@C1.^`1%('1Y'&8VRD/&#e):/V]zfAX4cMAJp1Y4r<ЦS])9{[ܞw)ɆcоdЦ+ yj,s='ߛ7e(T3[Á6""%t?؊!M*H:(Ö\gcj 蝔!= ^X5$<=s6Aш+KVoV7íY=).Y0$2Lf

1.求下列函数在给定区间上的最大值与最小值y=x^3-3x^2-9x-5 [-2,6]2.验证:不定积分∫xadx=(xa+1/a+1)+c (a≠-1)是对的.3.已知函数的导数为4x3,且x=0时,y=-2,求这个函数.4.已知物体做非匀速直线运动,在t时
1.求下列函数在给定区间上的最大值与最小值
y=x^3-3x^2-9x-5 [-2,6]
2.验证:不定积分∫xadx=(xa+1/a+1)+c (a≠-1)是对的.
3.已知函数的导数为4x3,且x=0时,y=-2,求这个函数.
4.已知物体做非匀速直线运动,在t时刻的瞬时速度为v=3t-2,且t=0时,s=0,求此物体的运动方程
5.求不定积分
∫(x3-2x+5)dx
∫(x/2+2/x)dx
∫(√t-1/√t) dx (注:t 开根号减去一除以t 开根号)

1.求下列函数在给定区间上的最大值与最小值y=x^3-3x^2-9x-5 [-2,6]2.验证:不定积分∫xadx=(xa+1/a+1)+c (a≠-1)是对的.3.已知函数的导数为4x3,且x=0时,y=-2,求这个函数.4.已知物体做非匀速直线运动,在t时
答:
1.
y'=3x^2-6x-9 当x=3或x=-1时,y'=0.f(x)在[-2,-1]递增,在(-1,3]递减,在(3,6]递增.f(-2)=-7,f(-1)=0,f(3)=-32,f(6)=49
所以当x=3时,f(x)有最小值-32;当x=6时f(x)有最大值49.
2.
设f(x)=x^(a+1)/(a+1)+C,f'(x)=x^a.所以∫x^adx=x^(a+1)/(a+1)+C(a≠-1)正确.
3.
y=∫4x^3dx=x^4+C,当x=0,y=C=-2,所以 y=x^4-2
4.
s=∫3t-2 dt= 3/2*t^2-2t+C,当t=0时s=C=0,所以s=3t^2/2-2t
5.
∫(x3-2x+5)dx=x^4/4-x^2+5x+C
∫(x/2+2/x)dx=x^2/4+2lnx+C
∫(√t-1/√t)dx=(√t-1/√t)x+C 很可能你打错题目了应该是dt不是dx,这样的话:∫(√t-1/√t)dt=2t√t/3-2√t+C