高数求极限 要详解lim (ln tanx -ln x)/(x^2) (x->0)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 23:31:47
高数求极限 要详解lim (ln tanx -ln x)/(x^2) (x->0)
高数求极限 要详解
lim (ln tanx -ln x)/(x^2) (x->0)
高数求极限 要详解lim (ln tanx -ln x)/(x^2) (x->0)
lim【x→0】(lntanx-lnx)/(x^2)
=lim【x→0】ln[(tanx)/x]/(x^2)
=lim【x→0】ln[(sinx/cosx)/x]/(x^2)
=lim【x→0】ln(1/cosx)/(x^2)
=lim【x→0】(1/cosx-1)/(x^2)
=lim【x→0】(1-cosx)/(cosx·x^2)
=lim【x→0】[(x^2)/2]/(x^2)
=1/2
答案;:1/2
趋于无穷大
也不对
正确答案是
(ln tanx -ln x)/(x^2)=ln(tanx/x)/(x^2)
=ln(tanx/x-1+1)/ (x^2 )
=(tanx/x-1)/ (x^2 )
...
全部展开
趋于无穷大
也不对
正确答案是
(ln tanx -ln x)/(x^2)=ln(tanx/x)/(x^2)
=ln(tanx/x-1+1)/ (x^2 )
=(tanx/x-1)/ (x^2 )
=(tanx-x)/ (x^3 )
=1/3
用等价无穷小替换,其中(tanx-x)/ (x^3 )可用洛比达法则算出。ln(1+x)~x
收起