高数求极限 要详解lim (ln tanx -ln x)/(x^2) (x->0)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 23:31:47
高数求极限 要详解lim (ln tanx -ln x)/(x^2) (x->0)
xN@_e%,B_hH'S0(D4 $*bcJ!*6(ݖ`RH~f?}-bt>1HrCo֣#Dp` }. 'pMw71>+Ḍ;D5p6K*B sF,l-c,ȰVsB\>hRһ;f㱰[D]Rz^IuXҌHu֞!e"fJ,C4S2hs[6Y͙6laɧBq=(p5=on+]-L&Ҥٷ&ɑ>͔k W\cV.DLҡpnS9CvG = U

高数求极限 要详解lim (ln tanx -ln x)/(x^2) (x->0)
高数求极限 要详解
lim (ln tanx -ln x)/(x^2) (x->0)

高数求极限 要详解lim (ln tanx -ln x)/(x^2) (x->0)
lim【x→0】(lntanx-lnx)/(x^2)
=lim【x→0】ln[(tanx)/x]/(x^2)
=lim【x→0】ln[(sinx/cosx)/x]/(x^2)
=lim【x→0】ln(1/cosx)/(x^2)
=lim【x→0】(1/cosx-1)/(x^2)
=lim【x→0】(1-cosx)/(cosx·x^2)
=lim【x→0】[(x^2)/2]/(x^2)
=1/2
答案;:1/2

趋于无穷大
也不对
正确答案是
(ln tanx -ln x)/(x^2)=ln(tanx/x)/(x^2)
=ln(tanx/x-1+1)/ (x^2 )
=(tanx/x-1)/ (x^2 )
...

全部展开

趋于无穷大
也不对
正确答案是
(ln tanx -ln x)/(x^2)=ln(tanx/x)/(x^2)
=ln(tanx/x-1+1)/ (x^2 )
=(tanx/x-1)/ (x^2 )
=(tanx-x)/ (x^3 )
=1/3
用等价无穷小替换,其中(tanx-x)/ (x^3 )可用洛比达法则算出。ln(1+x)~x

收起