已知函数f(x)=sin(2x+α)+根号3cos(2x+α)(0
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 14:35:26
已知函数f(x)=sin(2x+α)+根号3cos(2x+α)(0
已知函数f(x)=sin(2x+α)+根号3cos(2x+α)(0
已知函数f(x)=sin(2x+α)+根号3cos(2x+α)(0
f(x)=sin(2x+α)+根号3cos(2x+α)
=2sin(2x+α+π/3)
∵f(x)图像过(π/12,1)
∴f(π/12)=2sin(π/6+π/3+α)=2sin(π/2+α)=2cosα=1
∴cosα=1/2
∵0
(1)f(x)=2(1/2sin(2x+a)+√3/2cos(2x+a))
=2sin(2x+a+π/3)
将点代入原函数,解得a=π/3
(2)由(1)得f(x)=2sin(2x+2π/3)
当-π/2+2kπ<(2x+2π/3)<π/2+2kπ为增区间。解得-7π/12+kπ
全部展开
(1)f(x)=2(1/2sin(2x+a)+√3/2cos(2x+a))
=2sin(2x+a+π/3)
将点代入原函数,解得a=π/3
(2)由(1)得f(x)=2sin(2x+2π/3)
当-π/2+2kπ<(2x+2π/3)<π/2+2kπ为增区间。解得-7π/12+kπ
收起
(1)π/3
(2)[-7π/12+kπ,-π/12+kπ]和[-π/12+kπ,5π/12+kπ]
第一题(1)先将原式转化f(x)=2sin(2x+α+π/3)(2)在将点(π/12,1)带入上式中得:2sin(π/2+α)=1(3)由于0<α<π/2,所以可以得出α=π/3
第二题(1)由第一题得出f(x)=2sin(2x+2π/3)(2)单调递增区间:首先-π/2<=2x+2π/3<=π/2再化简-7π/12<=x<=-π/12最后得出单调递增区间为:[-7π/12,-π/12](...
全部展开
第一题(1)先将原式转化f(x)=2sin(2x+α+π/3)(2)在将点(π/12,1)带入上式中得:2sin(π/2+α)=1(3)由于0<α<π/2,所以可以得出α=π/3
第二题(1)由第一题得出f(x)=2sin(2x+2π/3)(2)单调递增区间:首先-π/2<=2x+2π/3<=π/2再化简-7π/12<=x<=-π/12最后得出单调递增区间为:[-7π/12,-π/12](3)单调递减区间:首先π/2<=2x+2π/3<=3π/2再化简-π/12<=x<=5π/12最后得出单调递减区间为:[-π/12,5π/12]**最后最好总结一下
收起