高一数学必修5的公式汇总

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/01 07:38:23
高一数学必修5的公式汇总
xVNG~\d;"sߋi֕HąEB0( m~j~h5؎ Bwo~vZza{gΜzܪ%q2z{]I>,$c=[d7[gbX*i)gHcT|T,EE%,im6PkSEE2Jp* \ۣr6RTAS*t3?GXT\,yIT+#Qk*(, hRcP[P +Ճq_}J`=bb5RvY?o&+#yfxC;A3_L/)?ӛ_#ASkCCIڏK[4hiGu:#v# J H\&iXK\I흥ꦹYYcirC.n flWOΦb ޴Qdy"%%R&urvHGv$<%P7HR,B3U2̽cM5 :FJu1 Z6 +"CER.JqTDL%f9p@䌒QDJNkګR# nc7,凮nsgYwC[-fqzVZd[l=_zr:d>g(Uu'ƭ'b5hQǃ3mN‚iXx`$d !@bܻ%n5z2,,gO|̆s{ io.WڍmRFkKl~4u8 v],5?Oŭރrq9f+i=^0}9|9NOhܼ&o8 ' 'AwBYLUW5| 5P* @ jr JĭB)|[^-+vFm DeI}MB60azئJ###F [pNvNFKd ϙ>:6/obe)X z;pE

高一数学必修5的公式汇总
高一数学必修5的公式汇总

高一数学必修5的公式汇总
三角函数公式
两角和公式
sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
倍角公式
tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
半角公式
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))
和差化积
2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB
某些数列前n项和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理 a/sinA=b/sinB=c/sinC=2R 注:其中 R 表示三角形的外接圆半径
余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角
弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r
乘法与因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)
三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b-b≤a≤b
|a-b|≥|a|-|b| -|a|≤a≤|a|
降幂公式
(sin^2)x=1-cos2x/2
(cos^2)x=i=cos2x/2
万能公式
令tan(a/2)=t
sina=2t/(1+t^2)
cosa=(1-t^2)/(1+t^2)
tana=2t/(1-t^2)

正弦定理:a/sinA=b/sinB=c/sinC=2R
余弦定理: a^2+b^2-2*a*b*cosC=c^2 a^2+c^2-2*a*c*cosB=b^2 b^2+c^2-2*b*c*cosA=a^2
等差数列的通项公式为:
an=a1+(n-1)d (1)
前n项和公式为:
Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2(2)

全部展开

正弦定理:a/sinA=b/sinB=c/sinC=2R
余弦定理: a^2+b^2-2*a*b*cosC=c^2 a^2+c^2-2*a*c*cosB=b^2 b^2+c^2-2*b*c*cosA=a^2
等差数列的通项公式为:
an=a1+(n-1)d (1)
前n项和公式为:
Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2(2)
(1)等比数列的通项公式是:An=A1*q^(n-1)
若通项公式变形为an=a1/q*q^n(n∈N*),当q>0时,则可把an看作自变量n的函数,点(n,an)是曲线y=a1/q*q^x上的一群孤立的点。
(2)求和公式:Sn=nA1(q=1)
Sn=A1(1-q^n)/(1-q)
=(a1-a1q^n)/(1-q)
=a1/(1-q)-a1/(1-q)*q^n ( 即A-Aq^n)
(前提:q不等于 1)
基本不等式:根号下AB=<(a+b)/2

收起