高数微分中值定理,证明:若n次多项式p(x)有n+1个零点,则p(x)=0
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 12:29:03
xMO0ǿJ,+q($$"@qzY"3$fӬ{9|95^LlҦ}^_[Ti4vv?À-Q4={d0уn]`d,!9wK|Ƭu5%SU7/hV,C6_$-/J ZC#]'~d8`s➆[&'~@ad HVl5J,b|mCEE֪@in^ZeI
0)Ye"| 7PRu5}ڜ@o!86trQ9v]E^%/^
高数微分中值定理,证明:若n次多项式p(x)有n+1个零点,则p(x)=0
高数微分中值定理,
证明:若n次多项式p(x)有n+1个零点,则p(x)=0
高数微分中值定理,证明:若n次多项式p(x)有n+1个零点,则p(x)=0
用反证法
不妨设p(x)首次项系数为1
用n次罗尔定理就行了
n次多项式p(x),
p(x)= bnx^n+b1x^(n-1)+....+b0
where bn.bn-1,...,b0 are constant
若 p(x) 有n+1个零点,a1,a2,..,an+1
p(x) = a(x-a1)(x-a2)...(x-an+1),
where a is constant
compare the coef of x^(n+1) = a = 0
=> p(x)=0