设方程 z^5-xz^4+yz^3=1 确定了隐函数 z=z(x,y) ,求在x=0,y=0时z的偏导数的平方/(x的偏导数*y的偏导数)答案是负25分之3
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/26 09:56:25
x͑MKQ Z6qR'HgW .j;7iQFkEh6/=yxO/Άx:*ah%ct)0&oEt_=*fVVO'ݠi\˂k8F=d-4ke>\N|;kfiO]/'~OKDYh"^}V;;O)A]X)7pTZyP
]O8r60mQAcIؔkSa $yy"%CAt#s"!ӠtTw^0,!CbFͨ)#ȒU~e*
设方程 z^5-xz^4+yz^3=1 确定了隐函数 z=z(x,y) ,求在x=0,y=0时z的偏导数的平方/(x的偏导数*y的偏导数)答案是负25分之3
设方程 z^5-xz^4+yz^3=1 确定了隐函数 z=z(x,y) ,求在x=0,y=0时z的偏导数的平方/(x的偏导数*y的偏导数)
答案是负25分之3
设方程 z^5-xz^4+yz^3=1 确定了隐函数 z=z(x,y) ,求在x=0,y=0时z的偏导数的平方/(x的偏导数*y的偏导数)答案是负25分之3