证明log(a^m)b^n=(n/m)log(a)b

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 04:01:29
证明log(a^m)b^n=(n/m)log(a)b
x){ٌtĸ\ͤ<[<\MfMR>!%v6$~,0I)odki8T0O ( ҉pAZF?7h~qAbEQ>

证明log(a^m)b^n=(n/m)log(a)b
证明log(a^m)b^n=(n/m)log(a)b

证明log(a^m)b^n=(n/m)log(a)b
证明:
log(a^m)b^n
=(lgb^n)/(lga^m)
=(n*lgb)/(m*lga)
=(n/m)*log(a)b
得证

证明a(log(m)n)=n(log(m)a) 证明log(a^m)b^n=(n/m)log(a)b 证明:log(a)(M^n)=nlog(a)(M) 证明:log(a)M*log(b)N=log(a)N*log(b)M.对调真数的位置,对数的积不变. 对数换底公式证明?log a^m b^n= n/m log a b 为什么我证明出来是=m/nlog a b log(a)M+log(a)N=? log a (m^n)=(log a m)^n? log a^m(b^n)=(n/m)*log a(b) log(a^k)(M^n)=(n/k)log(a)(M) (n∈R)怎么证明请不要用换底公式 对数log(a^n)M=1/n×log(a) M怎么证明?只能 用换底公式证明么? 证明对数运算法则(1)log(a)(MN)=log(a)(M)+log(a)(N);   (2)log(a)(M/N)=log(a)(M)-log(a)(N);(1)log(a)(MN)=log(a)(M)+log(a)(N);   (2)log(a)(M/N)=log(a)(M)-log(a)(N);   (3)log(a)(M^n)=nlog(a)(M) (n∈R) 求对数函数公式的推导log(a)(M^n)=nlog(a)(M) 和log(a)(N)=log(b)(N) / log(b)(a) 的推导 log(a^n)M=1/n×log(a) M,用对数换底公式怎么证明 换底公式推导过程1.log(a)(b)=1/log(b)(a) 2.log(a^n)(b^m)=m/n*[log(a)(b)] 3.log(a)(M^n)=nlog(a)(M) 求证 log(a) (M·N)=log(a) M+log(a) N log(下标a)(M*N)是什么意思?= log(下标a)M+log(下标a)N (1)利用关系式log(a)N=ba^b=N证明换底公式 log(a)N=log(m)N/log(m)a (2)利用(1)中的换底公式求下式的值 log(2)25*log(3)4*log(5)9 (3)利用(1)中的换底公式证明 log(a)b*log(b)c*log(c)a=1 (1)利用关系式log(a)N=ba^b=N证明换底公式 log(a)N=log(m)N/log(m)a (2)利用(1)中的换底公式求下式的值 log(2)25*log(3)4*log(5)9 (3)利用(1)中的换底公式证明 log(a)b*log(b)c*log(c)a=1