为什么说罗尔定理的推论:若函数的n阶导数不等于零,则原函数至多有n个根?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 22:39:38
为什么说罗尔定理的推论:若函数的n阶导数不等于零,则原函数至多有n个根?
xNP64b\KBjQ#r /s洬x紥T,uڙf$1,55{inABf])tx9(؍/S QzE:,F{4,jyKGc$b[)(P&IȞ7I`(`(X. I1. )[!5S#HA [*qnu>K}AsG EQ86n~25/V fr",:L "'BW@prZ'؍%0灮?sPQDى.QD#$?r?PSp D"8U"/g%A~2%tR3{s+"pUB'9-/5iL[NWi vxh^5{x2נ7 )9$

为什么说罗尔定理的推论:若函数的n阶导数不等于零,则原函数至多有n个根?
为什么说罗尔定理的推论:若函数的n阶导数不等于零,则原函数至多有n个根?

为什么说罗尔定理的推论:若函数的n阶导数不等于零,则原函数至多有n个根?
罗尔定理:f(x)在[a,b]连续,在(a,b)可导,如果f(a)=f(b),则f'(x)至少有一个根.
特别的,如果上述f(a)=f(b)=0,也就是f(x)在[a,b]有两个根,那么f'(x)在(a,b)至少有一个根.反之,如果f'(x)在(a,b)没有根,f(x)在[a,b]就不会有多于1个的根.
简单说,导函数没有根,原函数至多有一个根.
推而广之,如果f(x)在[a,b]连续,在(a,b)内n阶可导.并且f(x)在[a,b]有n+1个根:x0,x1,x2,...xn,那么根据罗尔定理,f'(x)在(x0,x1),(x1,x2),...,(xn-1,xn)内分别至少有一个根,从而在(a,b)内至少有n个根,同理f''(x)在(a,b)内至少有n-1个根,...,fk(x)(k阶导数)在(a,b)内至少有n-k+1个根,n阶导数fn(x)在(a,b)内至少有1个根.
因此,反过来,如果n阶导数没有根,f(x)就至多有n个根.