已知三角形ABC的三条边AB,AC,BC所在的直线方程分别为3x+4y+2=0,3x-4y+12=0,4x-3y=0,求其内切圆方程

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/25 18:53:17
已知三角形ABC的三条边AB,AC,BC所在的直线方程分别为3x+4y+2=0,3x-4y+12=0,4x-3y=0,求其内切圆方程
xSMo@1*[HH/iM1i󡊒(E J5%$FOzՖ _Jllj:frG us{+'{&Lbl g`S"K@G:oO *I$#=NɸHWǚ?+U-RV߬q3)5YJ"XiGv?į^xvM`c:P~/[

已知三角形ABC的三条边AB,AC,BC所在的直线方程分别为3x+4y+2=0,3x-4y+12=0,4x-3y=0,求其内切圆方程
已知三角形ABC的三条边AB,AC,BC所在的直线方程分别为3x+4y+2=0,3x-4y+12=0,4x-3y=0,求其内切圆方程

已知三角形ABC的三条边AB,AC,BC所在的直线方程分别为3x+4y+2=0,3x-4y+12=0,4x-3y=0,求其内切圆方程
已知三角形ABC的三条边AB,AC,BC所在的直线方程分别为3x+4y+2=0,3x-4y+12=0,4x-3y=0,求其内切圆方程
设内切圆的圆心为(m,n),半径为r,那么
r=︱3m+4n+2︱/5=︱3m-4n+12︱/5,故有3m+4n+2=±(3m-4n+12)
即有8n=10,n=5/4,或6m=-14,m=-7/3;
r=︱3m+4y+2︱/5=︱4m-3n︱/5,故有3m+4n+2=±(4m-3n),
即有m-7n-2=0或n+7m+2=0;
画出△ABC,内切圆圆心在△内,故必有m0,故应取n=5/4,代入n+7m+2=0,
得m=-(1/7)(n+2)=-(1/7)(5/4+2)=-(1/7)(13/4)=-13/28
于是r=︱4m-3n︱/5=︱-13/7-15/4︱/5=157/140
故内切圆方程为:(x+13/28)²+(y-5/4)²=(157/140)²
注:是否正确,可用作图验证.