e^(2x-y)—sin(xy)=e-1,确定隐函数y=f(x)在点(0,1)处的法线方程为

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 13:30:46
e^(2x-y)—sin(xy)=e-1,确定隐函数y=f(x)在点(0,1)处的法线方程为
xT[OA+ صLwf-]`yT Ÿ@n%å!ݮ>/8;v &ڗ993unHD>yVkGdh o/X~}m/,yJp`a{18~sl=mSʿM4FGFu9{Ns(Udj rI¢ ˂hZD%Orhf4]V!^JÒ,v"@œXV!gBBMlݞHH$zB; Py_9MrHur,eMTo7wOʝtcHQLڨԧn4UTUQWVzy{[蘶 qj`-ghm[CC9 BMs5f5Σy[frVBq K6bX+lhiyU-W,3s%RMqF-}x:G>QqvE]"cG>/])xk'stesI\.FfGIaposy @z(h~ Q^"ׄe:'ә|"D闣BhS9LsDa|`+㿟 V>w㏔]CI_ v-KùSp!u/Z{"_>k/}PRX,W/fʤ$ l؞ "z-7EL(qHr s6sO'e3u.D2: ,8ڟֺ;SA":^uβ4ϭLBMi/2ɤ9K\/KJ8q% ݳp%IxNҨK;;?

e^(2x-y)—sin(xy)=e-1,确定隐函数y=f(x)在点(0,1)处的法线方程为
e^(2x-y)—sin(xy)=e-1,确定隐函数y=f(x)在点(0,1)处的法线方程为

e^(2x-y)—sin(xy)=e-1,确定隐函数y=f(x)在点(0,1)处的法线方程为

两边对x求导:

[e^(2x - y)](2 - y') - [cos(xy)]*(y + xy') = 0

x = 0, y, = 1: y' = 2[e^(-1)]/[e^(-1) + 0] = 2 - e

法线斜率 = 1/(e - 2)

法线方程: y - 1 = (x - 0)/(e - 2)

y =  x/(e - 2) + 1

另见图

x=0=>y=ln(e-1)
e^(2x-y)—sin(xy)=e-1
=>y'=[ycosxy-2e^(2x-y)]/[e^(2x-y)-xcosxy]
=>y=f(x)在点(0,1)处的切线的斜率为:[ln(e-1)-2(e-1)]/(e-1)=-2+ln(e-1)
=>y=f(x)在点(0,1)处的法线方程为:y-1=[2-ln(e-1)]x
即[2-ln(e-1)]x-+1=0

e^(2x-y)—sin(xy)=e-1求导:
(2-y‘)e^(2x-y)-(y+xy')cos(xy)=0
带入(0,1)求得y'=2-e
法线与切线垂直,它们的积为-1.发现斜率为1/(e-2)
方程:y-1=x/(e-2)

方程两边同时对x求导得
e^(2x-y) . (2-dy/dx)-cos(xy).(y+xdy/dx)=0
将(0,1)带入求得dy/dx=2-e
所以法线的斜率k=-1/(2-e)
由此法线方程求得为:y=1-x/(2-e)

e^(2x-y)—sin(xy)=e-1
(2-y')e^(2x-y)-(y+xy')cos(xy)=0
2e^(2x-y)-ycos(xy)=(e^(2x-y)+xcos(xy))y'
y'=(2e^(2x-y)-ycos(xy))/(e^(2x-y)+xcos(xy))
f'(0)=(2/e-1)/(1/e)
=2-e
法线斜率=-1/(2-e)=1/(e-2)
y=f(x)在点(0,1)处的法线方程为 y=x/(e-2)+1