已知arg(-1+2i)=α,求sin(2α+2π/3)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 14:14:48
已知arg(-1+2i)=α,求sin(2α+2π/3)
已知arg(-1+2i)=α,求sin(2α+2π/3)
已知arg(-1+2i)=α,求sin(2α+2π/3)
因为arg(-1+2i)=α,所以sinα=2/√5,cosα=-1/√5.于是知sin2α=2sinα·cosα=-4/5.cos2α=2cosα·cosα-1=-3/5.
sin(2α+2π/3)=sin2α·cos2π/3+cos2α·sin2π/3=(-4/5)×√3/2+(-3/5)×(-1/2)=(3-4√3)/10
g(-1+2i) 这是啥意思
因为arg(-1+2i)=α,所以sinα=(2√5)/5,cosα =-√5/5
sin2α=2sinαcosα=2×(2√5)/5×(-√5/5 )=-4/5
cos2α=1-2sinα^2=-3/5
sin(2α+2π/3)=sin2αcos2π/3+cos2αsin2π/3
全部展开
因为arg(-1+2i)=α,所以sinα=(2√5)/5,cosα =-√5/5
sin2α=2sinαcosα=2×(2√5)/5×(-√5/5 )=-4/5
cos2α=1-2sinα^2=-3/5
sin(2α+2π/3)=sin2αcos2π/3+cos2αsin2π/3
=-4/5×(-1/2)+(-3/5)×(√3/2)
=4/10-(3√3)/10
=(4-3√3)/10
祝学习愉快!
收起