数学证明题,α = arc tan (2h / l ) R cos β = R cos α + h R sin β = l - R sin α已知α,β < 90° , α = arc tan (2h / l )R cos β = R cos α + h R sin β = l - R sin α 求证: R = ((h*h + l*l) / 2hl) * √( 4h*h + l*l)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 14:48:36
数学证明题,α = arc tan (2h / l ) R cos β = R cos α + h R sin β = l - R sin α已知α,β < 90° , α = arc tan (2h / l )R cos β = R cos α + h R sin β = l - R sin α 求证: R = ((h*h + l*l) / 2hl) * √( 4h*h + l*l)
xTn@~UQ+'NƽZML N'D u88H)p{7mRAx~vov=/.^>o;  4Cd0Q h:CVD2*sMy7:pwOQG]Tπ' aȶHm@I?:zaTuJ{WZG H@xIV*\ȕP 2~;L%%K$hh-]½ .g)V4oD~SZ[%K^~vD2<Cn񸸉qړY!GQًx?~"cMo{Mnlz<Ϩmqo^Jw٘NB\;e-=Sx6{ lqk.ޜGQPB(`FiDK 4wVq 8ԆXCnzhn~?whc6ԎV+T=y2.>:V* _={yL [nFF5x֙}y#8B-6T%BuIk::%Fte+H~M3c5+=?[u,pQŖn JXDI

数学证明题,α = arc tan (2h / l ) R cos β = R cos α + h R sin β = l - R sin α已知α,β < 90° , α = arc tan (2h / l )R cos β = R cos α + h R sin β = l - R sin α 求证: R = ((h*h + l*l) / 2hl) * √( 4h*h + l*l)
数学证明题,α = arc tan (2h / l ) R cos β = R cos α + h R sin β = l - R sin α
已知α,β < 90° , 

α = arc tan (2h / l )
R cos β = R cos α + h 
R sin β = l - R sin α 
求证: R = ((h*h + l*l) / 2hl) * √( 4h*h + l*l)


数学证明题,α = arc tan (2h / l ) R cos β = R cos α + h R sin β = l - R sin α已知α,β < 90° , α = arc tan (2h / l )R cos β = R cos α + h R sin β = l - R sin α 求证: R = ((h*h + l*l) / 2hl) * √( 4h*h + l*l)
α=arctan(2h/l)
tnaα=2h/l
cos²α=1/(1+tan²α)=l²/(4h²+l²)
cosα=l/√(4h²+l²)
sinα=tanαcosα=2h/√(4h²+l²)

Rcosβ=Rcosα+h (1)
Rsinβ=l-Rsinα (2)
(1)²+(2)²,得,
R²=R²cos²α+2hRcosα +h²+l² -2lRsinα +R²sin²α
2(lsinα-hcosα)R=h²+l²
即2lh/√(4h²+l²)R=h²+l²
R=[(h²+l²)/(2hl)]·√(4h²+l²)