数学证明题,α = arc tan (2h / l ) R cos β = R cos α + h R sin β = l - R sin α已知α,β < 90° , α = arc tan (2h / l )R cos β = R cos α + h R sin β = l - R sin α 求证: R = ((h*h + l*l) / 2hl) * √( 4h*h + l*l)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 14:48:36
数学证明题,α = arc tan (2h / l ) R cos β = R cos α + h R sin β = l - R sin α已知α,β < 90° , α = arc tan (2h / l )R cos β = R cos α + h R sin β = l - R sin α 求证: R = ((h*h + l*l) / 2hl) * √( 4h*h + l*l)
数学证明题,α = arc tan (2h / l ) R cos β = R cos α + h R sin β = l - R sin α
已知α,β < 90° ,
α = arc tan (2h / l )
R cos β = R cos α + h
R sin β = l - R sin α
求证: R = ((h*h + l*l) / 2hl) * √( 4h*h + l*l)
数学证明题,α = arc tan (2h / l ) R cos β = R cos α + h R sin β = l - R sin α已知α,β < 90° , α = arc tan (2h / l )R cos β = R cos α + h R sin β = l - R sin α 求证: R = ((h*h + l*l) / 2hl) * √( 4h*h + l*l)
α=arctan(2h/l)
tnaα=2h/l
cos²α=1/(1+tan²α)=l²/(4h²+l²)
cosα=l/√(4h²+l²)
sinα=tanαcosα=2h/√(4h²+l²)
又
Rcosβ=Rcosα+h (1)
Rsinβ=l-Rsinα (2)
(1)²+(2)²,得,
R²=R²cos²α+2hRcosα +h²+l² -2lRsinα +R²sin²α
2(lsinα-hcosα)R=h²+l²
即2lh/√(4h²+l²)R=h²+l²
R=[(h²+l²)/(2hl)]·√(4h²+l²)