已知,AB=BC,BD=BE,∠ABC=∠DBE=α,M、N分别是AD、CE的中点.如图1,若α=60°,求∠BMN;
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 19:31:09
已知,AB=BC,BD=BE,∠ABC=∠DBE=α,M、N分别是AD、CE的中点.如图1,若α=60°,求∠BMN;
已知,AB=BC,BD=BE,∠ABC=∠DBE=α,M、N分别是AD、CE的中点.如图1,若α=60°,求∠BMN;
已知,AB=BC,BD=BE,∠ABC=∠DBE=α,M、N分别是AD、CE的中点.如图1,若α=60°,求∠BMN;
连接BN
∵∠ABC=∠DBE=α,∠ABD=∠ABC+∠CBD,∠CBE∠DBE+∠CBD
∴∠ABD=∠CBE
∵AB=BC,BD=BE
∴△ABD≌△CBE (SAS)
∴AD=CE,∠BAD=∠BCE
∵M是AD的中点,N是CE的中点
∴AM=AD/2,CN=CE/2
∴AM=CN
∴△ABM≌△CBN (SAS)
∴BM=BN,∠ABM=∠CBN
∴∠MBN=∠CBM+∠CBN=∠CBM+∠ABM=∠ABC=α
∴∠BMN=(180-∠MBN)/2=(180-α)/2
∵α=60
∴∠BMN=60°
⑴当α=60°时如图一,连接BN
∵AB=BC,BD=BE,∠ABC=∠DBE=α=60°
∴∠ABD=CBE=180°-α=120°
∴⊿ABD≌⊿CBE
∴∠1=∠2,AD=CE
又M,N分别是AD,CE的中点
∴AM=CN
∠1=∠2
AB=BC
∴⊿ABM≌⊿CBN
∴BM=BN;∠3=∠4...
全部展开
⑴当α=60°时如图一,连接BN
∵AB=BC,BD=BE,∠ABC=∠DBE=α=60°
∴∠ABD=CBE=180°-α=120°
∴⊿ABD≌⊿CBE
∴∠1=∠2,AD=CE
又M,N分别是AD,CE的中点
∴AM=CN
∠1=∠2
AB=BC
∴⊿ABM≌⊿CBN
∴BM=BN;∠3=∠4
∵∠3+∠CBM=∠ABC=60°
∴∠4+∠CBM=∠MBN=60°
∵⊿MBN是等边三角形
∴∠BMN=60°
(2)当α=90°时如图二,
∵AB=BC,BD=BE,∠ABC=∠DBE=α=90°
∴⊿ABD≌⊿CBE
∴∠5=∠6,AD=CE
又M,N分别是AD,CE的中点
∴AM=CN
∠5=∠6
AB=BC
∴⊿ABM≌⊿CBN
∴∠7=∠8
∵∠7+∠MBC=∠ABC=90°
∴∠8+∠MBC=∠MBN=90°
∴⊿MBN是等腰直角三角形
∴∠BMN=45°
收起