1×(1/3)+3×(1/5)+5×(1/7)+...+99×(1/101)=多少?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 14:48:16
1×(1/3)+3×(1/5)+5×(1/7)+...+99×(1/101)=多少?
xN@_Gօ]g DIikbz0Uz-|B8={pog_SQaS 0FGFLgXLݝ]4?4\ZkV[iB6+HDz[}EAʠJ&r.FYUAuX)^Ň&`9'E2R$ 6q<ӹ(FeSPc J1XCU~ɮ

1×(1/3)+3×(1/5)+5×(1/7)+...+99×(1/101)=多少?
1×(1/3)+3×(1/5)+5×(1/7)+...+99×(1/101)=多少?

1×(1/3)+3×(1/5)+5×(1/7)+...+99×(1/101)=多少?
1×(1/3)+3×(1/5)+5×(1/7)+...+99×(1/101)
=1-2/3+1-2/5+1-2/7+.+1-2/101
=50-2*(1/3+1/5+1/7+...1/101)
=50-2*1.9477
=46.1046

我们可以把数:1/3、3/5、5/7……看成是一个数列{an},分子和分 母都是相差2的奇数。
则数列的通项公式为:an=(2n-1)/(2n+1),(n=1,2……,50)