已知函数f(x)=sin(wx+π/3)(w>0),f(π/6)=f(π/2),且f(x)在区间(π/6,π/2)有最大值无最小值,则w

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 15:42:03
已知函数f(x)=sin(wx+π/3)(w>0),f(π/6)=f(π/2),且f(x)在区间(π/6,π/2)有最大值无最小值,则w
xTN@pbb[DHvUC{@* :4-E"Ji )BC?@s/tvvIN*b̼73z6C~?~ZrnC0sˮ%`fVDi]eU4𯈒=$ްA6Vk9o+'Tn,jo? 'g30>n!R,g8_Gѣ}̌]"u{4\_ю_߂ cDP'zx޵F&lR]X5qVŖ7xxV/׊isO!keW"QQ}ha?f@=ڝ OQ7o62|uTb-S9[9%kf.RV>=SAv-/lZIX>'E]-ȾMO`ehq)( D<9:vX= vv1?3&f&icƢ@K~ϔ&

已知函数f(x)=sin(wx+π/3)(w>0),f(π/6)=f(π/2),且f(x)在区间(π/6,π/2)有最大值无最小值,则w
已知函数f(x)=sin(wx+π/3)(w>0),f(π/6)=f(π/2),且f(x)在区间(π/6,π/2)有最大值无最小值,则w

已知函数f(x)=sin(wx+π/3)(w>0),f(π/6)=f(π/2),且f(x)在区间(π/6,π/2)有最大值无最小值,则w
已知函数f(x)=sin(wx+π/3)(w>0),f(π/6)=f(π/2)且f(x)在区间(π/6, π/2)内有最大值,无最小值,求w
解析:∵函数f(x)=sin(wx+π/3)(w>0),f(π/6)=f(π/2)且f(x)在区间(π/6, π/2)内有最大值,无最小值
则函数f(x)初相为π/3,离Y轴最近的极值点为最大值点
最大值点:wx+π/3=2kπ+π/2==>x=2kπ/w+π/(6w)
最小值点:wx+π/3=2kπ+3π/2==>x=2kπ/w+7π/(6w)
要使f(π/6)=f(π/2)且f(x)在区间(π/6,π/2)内有最大值,无最小值
须使x=π/6,x=π/2关于x=π/(6w),即x=π/3对称
令π/(6w)=π/3==>w=1/2
∴f(x)=sin(1/2x+π/3)

已知函数f(x)=sin(ωx+π/3)(ω>0),,f(π/6)=f(π/3),且f(x)在区间(π/6,π/3)有最小值,无最大值,求ω=?
(1/2)(π/6+π/3)=π/4,∵f(π/6)=f(π/3),∴x=π/4是其对称轴,又因为f(x)有最小值-1,
故有f(π/4)=sin(ωπ/4+π/3)=-1,考虑到ω>0,故有ωπ/4+π/3=3π/2,ωπ/4=3π/2...

全部展开

已知函数f(x)=sin(ωx+π/3)(ω>0),,f(π/6)=f(π/3),且f(x)在区间(π/6,π/3)有最小值,无最大值,求ω=?
(1/2)(π/6+π/3)=π/4,∵f(π/6)=f(π/3),∴x=π/4是其对称轴,又因为f(x)有最小值-1,
故有f(π/4)=sin(ωπ/4+π/3)=-1,考虑到ω>0,故有ωπ/4+π/3=3π/2,ωπ/4=3π/2-π/3=7π/6,
∴ω=14/3。
事实上,f(π/6)=sin[(14/3)×(π/6)+π/3)]=sin(10π/9)=sin(π+π/9)=-sin(π/9)
f(π/3)=sin[(14/3)×(π/3)+π/3)]=sin(17π/9)=sin(2π-π/9)=-sin(π/9)=f(π/6)
f(π/4)=sin[(14/3)×(π/4)+π/3]=sin(9π/6)=sin(π+π/2)=-sin(π/2)=-1.
π/6<π/4<π/3.即在区间(π/6,π/3)上确有最小值-1,但无最大值(因为是
).

收起