设f(x)=ax2+1/bx=c是奇函数(a,b,c属于整数),且f(1)=2,f(2)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 05:30:04
x=N1Fck=)({-
-4ti(fJ~˶{50u뷰zorʇ{9>-T#-F,ݭ>Mn35ER^w0JIxmޛ%$ X(68 0!)[S=O~dîǗs I]j".3=.2wm}Soo{
设f(x)=ax2+1/bx=c是奇函数(a,b,c属于整数),且f(1)=2,f(2)
设f(x)=ax2+1/bx=c是奇函数(a,b,c属于整数),且f(1)=2,f(2)
设f(x)=ax2+1/bx=c是奇函数(a,b,c属于整数),且f(1)=2,f(2)
f(x)=(ax2+1)/(bx+c)是奇函数,则
f(-x)=-f(x)
f(1)=(a+1)/(b+c)=2
a+1=2(b+c)=2b+2c.(1)
f(-1)=(a+1)/(-b+c)=-f(1)=-2
a+1=-2(-b+c)=2b-2c.(2)
(1)-(2)得:2b+2c=2b-2c
c=0
a=2b-1
所以f(x)=(ax^2+1)/(bx)
f(2)=(4a+1)/(2b)
=[4(2b-1)+1]/(2b)
=[8b-3]/(2b)