设函数f(x)=x^2-2x+1-k^2,对于任意的x∈(0,正无穷)f(x)>2k-2恒成立,求k取值范围
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/29 16:41:18
xSnPK*VO,Tv%MBr)4N%&4i-Mxsν~"]ea3s.Fs%ónJDb#oDOkF*MN\FDJ#EXgc`ˊQB1=.245أcˉd,dE6+PYTbגWL|V
@JsV~#E&|I\4w3Q+(eQ15Yb]ao,I_S$;N,
设函数f(x)=x^2-2x+1-k^2,对于任意的x∈(0,正无穷)f(x)>2k-2恒成立,求k取值范围
设函数f(x)=x^2-2x+1-k^2,对于任意的x∈(0,正无穷)f(x)>2k-2恒成立,求k取值范围
设函数f(x)=x^2-2x+1-k^2,对于任意的x∈(0,正无穷)f(x)>2k-2恒成立,求k取值范围
f(x)>2k-2恒成立
即f(x)-2k+2>0恒成立
则x²-2x+1-k²-2k+2>0恒成立 x∈(0,+无穷)
首先找到二次函数的对称轴-2a分之b=1又函数图像开口向上
可知当x=1时取到最小值
若x∈(0,+无穷)x²-2x+1-k²-2k+2>0恒成立
只需让这个最小值>0即可
故将x=1代入,原式得
1-2+1-k²-2k+2= -k²-2k+2令其>0
k²+2k-2<0
解,得 - 根号3-1<k<根号3-1
x^2-2x+1-k^2-2k+2>0
Δ=4-4(1-k^2-2k+2)=4(1-1+k^2+2k-2)>0
k^2+2k+1>3
k>-1+√3或k<-1-√3
∵x^2-2x+1-k^2>2k-2
∴(x-1)^2>k^2+2k-3恒成立(即需求最值)
∴k^2+2k-3≤0
∴-3≤k≤1
-4
在x∈(0,正无穷)时,f(x)最小值在x=1点
此时f(x)=-k^2
-k^2>2k-2
得出 -1-根号3 < k < -1+根号3