已知函数F(x)=2sin(wx+π/6),w∈R 且w≠0(1)若F(x)的图像经过点(π/6,2),且0(1)中以求得w=2,(2)怎么解呢

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/01 06:55:56
已知函数F(x)=2sin(wx+π/6),w∈R 且w≠0(1)若F(x)的图像经过点(π/6,2),且0(1)中以求得w=2,(2)怎么解呢
xTNP};BZ(ԨKp5 cXAVb!;޶L}w[e1.wsͭp}ha}T"٨gΔeeՅa"{PQc·oM n 78_veo!,iY=n9T[h%{hxM|$\pۙ[:Z-.- ,aatO -ߪkTj AnmJNATLyq")wUءcS#٬R) bD^><FdbV™YrXG R2Hm .v'!x6 `83_iM2UlinJreFayE$vAޒ2|dz!0 N&ARQǷ.7Sy

已知函数F(x)=2sin(wx+π/6),w∈R 且w≠0(1)若F(x)的图像经过点(π/6,2),且0(1)中以求得w=2,(2)怎么解呢
已知函数F(x)=2sin(wx+π/6),w∈R 且w≠0
(1)若F(x)的图像经过点(π/6,2),且0
(1)中以求得w=2,(2)怎么解呢

已知函数F(x)=2sin(wx+π/6),w∈R 且w≠0(1)若F(x)的图像经过点(π/6,2),且0(1)中以求得w=2,(2)怎么解呢
(1)∵F(x)的图像经过点(π/6,2)
代入:2=2sin(π/6w+π/6) 由于sin(kπ+π/2)=0,且0

(1)∵F(x)的图像经过点(π/6,2)
代入:2=2sin(π/6w+π/6) 由于sin(kπ+π/2)=0,且0所以得w=2
(2)g(x)= mF(x) + n =2msin(2x+π/6)+n
∵m>0,且x∈[0,π/2],2x+π/6∈[π/6,7π/6],即sin(2x+π/6)∈[-1/2,1],
∴g(x)= 2msin(2x...

全部展开

(1)∵F(x)的图像经过点(π/6,2)
代入:2=2sin(π/6w+π/6) 由于sin(kπ+π/2)=0,且0所以得w=2
(2)g(x)= mF(x) + n =2msin(2x+π/6)+n
∵m>0,且x∈[0,π/2],2x+π/6∈[π/6,7π/6],即sin(2x+π/6)∈[-1/2,1],
∴g(x)= 2msin(2x+π/6)+n∈[-m+n,2m+n]
即 -m+n=-5,2m+n=1
解得:m=2,n=-3

及时追问,望采纳!

收起