二倍角的三角函数求证:sin2x/(1-cos2x)*sinx/(1+sinx)=tan(π/4-x/2)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 18:47:18
二倍角的三角函数求证:sin2x/(1-cos2x)*sinx/(1+sinx)=tan(π/4-x/2)
xQN0~F!j1yD"1A 03 JIy^"N)ىCHAH,;NϘۛߟãpÃ̢`>OmcGiAC koƄSVl?4ʮT(O ɹ1#F\hdOARBD2pFpȚW*:OS^ !.U4ʠ~r_)?õZj<,G ~8۶]R(P $;Ј}7U#>^o*CE),>D&EҚ״i\-P'

二倍角的三角函数求证:sin2x/(1-cos2x)*sinx/(1+sinx)=tan(π/4-x/2)
二倍角的三角函数
求证:sin2x/(1-cos2x)*sinx/(1+sinx)=tan(π/4-x/2)

二倍角的三角函数求证:sin2x/(1-cos2x)*sinx/(1+sinx)=tan(π/4-x/2)
因为sin2x=2sinx*cosx 1-cos2x=2(sinx)^2
sin2x/(1-cos2x)*sinx/(1+sinx)=cosx/(1+sinx)
cosx=cos(x/2)^2-sin(x/2)^2
1+sinx=(cos(x/2)+sin(x/2))^2
所以分子分母都除以cos(x/2)^2
cosx/(1+sinx)=(1-tan(x/2)^2)/(1+tan(x/2))^2=(1-tan(x/2))/(1+tan(x/2))
因为tan(π/4-x/2)=(1-tan(x/2))/(1+tan(x/2))
左边=右边,
所以等式成立
sin2x/(1-cos2x)*sinx/(1+sinx)=tan(π/4-x/2)

sin2x/(1-cos2x)*sinx/(1+sinx)
=2sinxcosx/2(sinx)^2*sinx/(1+sinx)
=cosx/sinx*sinx/(1+sinx)
=cosx/(1+sinx)
=sin(π/2-x)/[1+cos(π/2-x)]
=2sin(π/4-x/2)cos(π/4-x/2)/2(cos(π/4-x/2))^2
=sin(π/4-x/2)/cos(π/4-x/2)
=tan(π/4-x/2)