已知函数f(x)=x²+2x+3/x,x∈【2,+∞)1)证明函数为增函数 2)求函数的最小值非常抱歉,题目应是(x²+2x+3)/x

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 20:32:16
已知函数f(x)=x²+2x+3/x,x∈【2,+∞)1)证明函数为增函数 2)求函数的最小值非常抱歉,题目应是(x²+2x+3)/x
xVNG~*e3-R-T]TAC(AQrbҋ YʯvmcQ1i\xw?7y "xu?Ȇ9'#lZI$T%e2.շsnRuoʸy;]oލj|ڧnV+oJiB%,[ʈu%.+.qBR,w+&3Zu|ǾXzuJOKJifvg}wgKe(?n_ [)c2O|QS.Blb*Le(Anz*aQՠ. yEp TZ^-2eٔ%"kZ."rވRM*V] ]GA~ f2De@Cî͘EuC7Pw]CZ#}=!3mLT1vMd[H3uX bh~#ǍZix_%ޞK JB)$tl&HwdCH֡t&8^iFL|70w 2V$U?(HB\ s P OXXc,LU[&",D<=U^|>? ~o.ovpÀ;ggL'BVM (qa+N^ZM; - ?ěd @,>@HaSI)T̺o6Xߚ9iT&ɪHЮMDtY$=^G~?[`-'ֵB%|kWtME#y_8e2^[-^?@~}Ol!Z$:>1U&0gx$T0% )eaSa3A(IG8#(K쁏KHc#.^8ww+ܳ| xqۄȝ_ڋw@j+K7?J7Ђ@

已知函数f(x)=x²+2x+3/x,x∈【2,+∞)1)证明函数为增函数 2)求函数的最小值非常抱歉,题目应是(x²+2x+3)/x
已知函数f(x)=x²+2x+3/x,x∈【2,+∞)
1)证明函数为增函数 2)求函数的最小值
非常抱歉,题目应是(x²+2x+3)/x

已知函数f(x)=x²+2x+3/x,x∈【2,+∞)1)证明函数为增函数 2)求函数的最小值非常抱歉,题目应是(x²+2x+3)/x

2
因为是增函数,所以x=2时取极小值9,5

f(x)=x^2+2x+3/x
=x^2+x+x+3/x
由于x∈【2,+∞)
所以x^2+x=(x+1/2)^2-1/4是增函数
令g(x)=x+3/x
令x1>x2
则g(x1)-g(x2)=(x1-x2)-(3/x1-3/x2)=(x1-x2)(3+x1x2)/(x1x2)>0
所以x+3/x也是增函数
所以f(x)函数为增函数...

全部展开

f(x)=x^2+2x+3/x
=x^2+x+x+3/x
由于x∈【2,+∞)
所以x^2+x=(x+1/2)^2-1/4是增函数
令g(x)=x+3/x
令x1>x2
则g(x1)-g(x2)=(x1-x2)-(3/x1-3/x2)=(x1-x2)(3+x1x2)/(x1x2)>0
所以x+3/x也是增函数
所以f(x)函数为增函数
所以f(x)最小值=f(2)=4+4+3/2=19/2

收起

(1)设2<a<b,
f(a)-f(b)
=(a²+2a+3)/a-(b²+2b+3)/b
=﹙ba²+2ba+3b-ab²-2ab-3a)/ab
=[ab(a-b)-3(a-b)]/ab
∵a<b,∴分子小于0,分母大于0,值小于0,
∴f(x)在x∈[2,+∞)上是增函数。
由函数f(x)是单...

全部展开

(1)设2<a<b,
f(a)-f(b)
=(a²+2a+3)/a-(b²+2b+3)/b
=﹙ba²+2ba+3b-ab²-2ab-3a)/ab
=[ab(a-b)-3(a-b)]/ab
∵a<b,∴分子小于0,分母大于0,值小于0,
∴f(x)在x∈[2,+∞)上是增函数。
由函数f(x)是单调增加,即在x=2取得最小值:
f(2)min=(2²+2×2+3)/2=11/2.

收起

f(x)=(x²+2x+3)/x=x+3/x+2
f'(x)=1-3/x^2=(x^2-3)/x^2>0 所以函数是增函数
f(x)=x+3/x+2 由1)得函数是增函数
则f(x)>=f(1)=6
所以函数的最小值是6非常抱歉,各位,题目应是(x²+2x+3)/x我就是按这做的!可你这一部错了)=(x²+2x+3)/x=x+3/...

全部展开

f(x)=(x²+2x+3)/x=x+3/x+2
f'(x)=1-3/x^2=(x^2-3)/x^2>0 所以函数是增函数
f(x)=x+3/x+2 由1)得函数是增函数
则f(x)>=f(1)=6
所以函数的最小值是6

收起