计算.(1) (2×5+2)(4×7+2)(6×9+2)(8×11+2)...(2002×2005+2)/(1×4+2)(3×6+2)(5×8+2)(7×10+2)...(2001×2004+2)(2)(-1/2)的2004次方+(-1/2)的2005次方

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 07:42:51
计算.(1) (2×5+2)(4×7+2)(6×9+2)(8×11+2)...(2002×2005+2)/(1×4+2)(3×6+2)(5×8+2)(7×10+2)...(2001×2004+2)(2)(-1/2)的2004次方+(-1/2)的2005次方
xTn@~=ڲg8)RET"xK4mmWUڐ(&7Y; |' HHHY7TyE~1nxiV ҵb R мΡy*tx Q eV.\t0IZjLU/r[/N/;T mg(,TCX-]) "ww@roF&>tkQl%ȼ]qh6 DٰYKdK9

计算.(1) (2×5+2)(4×7+2)(6×9+2)(8×11+2)...(2002×2005+2)/(1×4+2)(3×6+2)(5×8+2)(7×10+2)...(2001×2004+2)(2)(-1/2)的2004次方+(-1/2)的2005次方
计算.
(1) (2×5+2)(4×7+2)(6×9+2)(8×11+2)...(2002×2005+2)/(1×4+2)(3×6+2)(5×8+2)(7×10+2)...(2001×2004+2)
(2)(-1/2)的2004次方+(-1/2)的2005次方

计算.(1) (2×5+2)(4×7+2)(6×9+2)(8×11+2)...(2002×2005+2)/(1×4+2)(3×6+2)(5×8+2)(7×10+2)...(2001×2004+2)(2)(-1/2)的2004次方+(-1/2)的2005次方
1) 原式=【(2×5+2)/(1×4+2)】【(4×7+2)/(3×6+2)】【(6×9+2)/(5×8+2)】×……×【(2002×2005+2)/(2001×2004+2)】=2×(3/2)×(4/3)×(5/4)×……×(1002/1001)=1002
2) 原式=(-1/2)^2005×(-2)+(-1/2)^2005=(-1/2)^2005×(-2+1)= -(1/2)^2005×(-1)=(1/2)^2005

(1)设函数Y=[(n+1)(n+4)+2]/[n(n+3)+2] 当n=1时 (2×5+2)/(1×4+2)
将Y化简可得Y=[n^2+5n+6]/[n^2+3n+2]=(n+2)(n+3)/(n+1)(n+2) 这时候规律就出来了
则S=Y(1)×Y(3)×Y(5)×......×Y(2001)= (1+3)(3+3)(5+3)(7+3...

全部展开

(1)设函数Y=[(n+1)(n+4)+2]/[n(n+3)+2] 当n=1时 (2×5+2)/(1×4+2)
将Y化简可得Y=[n^2+5n+6]/[n^2+3n+2]=(n+2)(n+3)/(n+1)(n+2) 这时候规律就出来了
则S=Y(1)×Y(3)×Y(5)×......×Y(2001)= (1+3)(3+3)(5+3)(7+3)...(2001+3)/ (1+1)(3+1) (5+1)(7+1)...(2001+1)=(2001+3)/(1+1)=1002 答案为1002 ( 可发现1+3=3+1 3+3=5+1 5+3=7+1 依此类推都可以约掉)
(2)(-1/2)的2004次方+(-1/2)的2005次方 可先提出公因式 原式=(-1/2)的2004次方[1+(-1/2)]=(1/2)的2005次方

收起