高数二重积分中有绝对值应该怎么处理啊?积分区域的奇偶性和被积函数的奇偶性有什么关系?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/24 10:51:48
高数二重积分中有绝对值应该怎么处理啊?积分区域的奇偶性和被积函数的奇偶性有什么关系?
xSNA~cb"A]XhQf/ UtirQ@zZh--rfgw+̮\j42ٙ99wY68o+eRjQz&*P_ұI˵8:ZQ3Q6ad;+8*J$>%eDa/#ﱝLwE2MY$KLM6nJ?Jn ̢d.=xOi2iY"溽\hy QN,;궙[V<Պu;ڸ5mB\!qM+%@͠?PxO`RW*(6P4{(P ,nF P?.4_WmeyElVͥq#UjJ |>`HvO\M Zݬ3eI)|tF-n:Pj5XՓY(IлWHd69Cl

高数二重积分中有绝对值应该怎么处理啊?积分区域的奇偶性和被积函数的奇偶性有什么关系?
高数二重积分中有绝对值应该怎么处理啊?积分区域的奇偶性和被积函数的奇偶性有什么关系?

高数二重积分中有绝对值应该怎么处理啊?积分区域的奇偶性和被积函数的奇偶性有什么关系?
当题目中同时具备积分区域的对称性和被积函数的奇偶性时,往往可以化简积分过程.
本题中,被积分区域分别关于x轴和y轴对称;被积分函数函数关于x和y都是偶函数.
设D1:0≤x≤1,0≤y≤1
∫∫(D)︱︱x︱+︱y︱-1︱dσ=4∫∫(D1)︱x+y-1︱dσ=4{∫(0,1)∫(0,1-x)[-x-y+1]dxdy+∫(0,1)∫(1-x,1)[x+y-1]dxdy}=4{(1/2)∫(0,1)(1-x)^2+dx+(1/2)∫(0,1)x^2dx}=4[(1/6)+(1/6)]=4/3

这个就像中学的积分里面一样,你要分类讨论的,右边的绝对值x和绝对值y是告诉你一个积分的矩形区域,然后,你再把左边的绝对值去掉,去绝对值可以得到x和y的区域

分情况四种情况讨论,根据下面四种情况,去掉绝对值,然后不二重积分转化成累次积分运算就可以了
第一种0第二种-1=第三种0第四种-1=