设数列的{an}前n项和为Sn 且满足2a(n)= 3Sn-5/2S(n-1)-2(n>=2) a(1)=2.(1) 求数列{an}的通项公式(2)证明:1/2(log(2)Sn+log(2)S(n+2))<log(2)S(n+1)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 05:41:31
设数列的{an}前n项和为Sn 且满足2a(n)= 3Sn-5/2S(n-1)-2(n>=2) a(1)=2.(1) 求数列{an}的通项公式(2)证明:1/2(log(2)Sn+log(2)S(n+2))<log(2)S(n+1)
设数列的{an}前n项和为Sn 且满足2a(n)= 3Sn-5/2S(n-1)-2(n>=2) a(1)=2.(1) 求数列{an}的通项公式(2)证明:1/2(log(2)Sn+log(2)S(n+2))<log(2)S(n+1)
设数列的{an}前n项和为Sn 且满足2a(n)= 3Sn-5/2S(n-1)-2(n>=2) a(1)=2.(1) 求数列{an}的通项公式(2)证明:1/2(log(2)Sn+log(2)S(n+2))<log(2)S(n+1)
2a(n)= 3Sn-5/2S(n-1)-2
即2[Sn-S(n-1)]=3Sn-(5/2)S(n-1)-2
Sn=(1/2)S(n-1)+2
Sn-4=(1/2)[S(n-1)-4]
所以{Sn-4}是公比为1/2的等比数列
首项=S1-4=2-4=-2
所以Sn-4=(-2)*(1/2)^(n-1)=
故Sn=-2/2^(n-1)+4
S(n-1)=-2/2^(n-2)+4
所以通项公式an=Sn-S(n-1)=1/2^(n-2)
log2 Sn=log2 [4-1/2^(n-2)]=2-log2 (1-1/2^n)
log2 S(n+2)=log2 [4-1/2^n]=2-log2 [1-1/2^(n+2)]
log2 S(n+1)=log2 [4-1/2^(n-1)]=2-log2 [1-1/2^(n+1)]
log2 Sn+log2 Sn=4-log2 (1-1/2^n)[1-1/2^(n+2)]
2log2 S(n+1)=4-2log2 [1-1/2^(n+1)]=4-2log2 [1-1/2^(n+1)]^2
要使不等式成立,只需 [1-1/2^(n+1)]^2>(1-1/2^n)[1-1/2^(n+2)]
即1-1/2^n+1/2^(2n+2)>1-1/2^n-1/2^(n+2)+1/2^(2n+2)
亦即-1/2^n>-1/2^n-1/2^(n+2)
显然成立
得证.
将an=Sn-S(n-1)代入整理的2Sn=S(n-1)+4,Sn=2^(n+1)-6,an=2^(n+1)(n>=2)
要证不等式由于log(2)x为增函数,故只要比较SnS(n+2)与S(n+1)的平方的大小,由之前解出的Sn通项容易解得,具体步骤略....