已知某商品的进价为每件40元,现在售价是每件60元,每星期可卖出300件.市场调查反映:每降价一元,每星期可卖出18件,且不低于45元,每件降x元(1)设y件/每星期,求y和x函数关系及x取值范围(2

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 20:45:51
已知某商品的进价为每件40元,现在售价是每件60元,每星期可卖出300件.市场调查反映:每降价一元,每星期可卖出18件,且不低于45元,每件降x元(1)设y件/每星期,求y和x函数关系及x取值范围(2
xXNW~YU6fvPꡏEk(ҘE@0cmh Ɛpq`L`E}2gf EJUAJ83rR>=.vKqL3ӃnIuZn RpvVjNFKLgÚjh56-n _Z*ۭ}^X\raOKE/-T2osgIg3Z3iif;4]?0I>q?p_Δ}Dk,7xǩf7P&Nm{ЅgyޣvM_VvZ3ݗ+zcбw9kssUt@dIO"BL![9$Vp*yМjnm٭אw[^ܴ:p28'RaB.WYgYc|V%GG3#fH+=?Ȣ}JF?L?GeΓa& =I-BVXyxx(4D28N$!-Yt}% ,8D;rp}8O5W!yćnPDByIZqoy~~j|םCC[ !jy D~ 3t,NK>g @$ê8'^9UWt|yҏr &KW<6K 7KhjJiȊdJ8ss\Og̶nҋ 7K@TCQD-Kͮa]4'~!yd DOHo~H!4'Pt9: xB1t|8$3%$kŇ$ΌEj|h8ɲzH|n\֭]vJ$|keVk}/s^,eؾ,0~YeAQB~9-63w~n2?Q2LC}LTa8 2imUj `Gγg/'ÌJ"KI>_I4]-o穻ٰ/u-0vTe L3X;>eЬ'O*@—D/>>gAX1H4.2 {="o+,V(@EB'q(s+"jFSwa HiVF*Ft{IP6/1 |][_ʩw.䀕N%r?fwمWO &hﲋB_ !R| N?D"@N6 ^~RȖS^0..K?0_pFHGlbQX@t||,&@bIFp_ 3@f0'JT̙C))hwVpsE i5bq2|yG5QLV'LJo#M 'dSfhk%mpTz-(ϡ"Ƿ_eCĒ0ovl mĀbEd8N*67I[+ xf JBݙm :==DLSbywlZr E@^ZKujSX Ts}\T۟0>e; q:I*G`ooM

已知某商品的进价为每件40元,现在售价是每件60元,每星期可卖出300件.市场调查反映:每降价一元,每星期可卖出18件,且不低于45元,每件降x元(1)设y件/每星期,求y和x函数关系及x取值范围(2
已知某商品的进价为每件40元,现在售价是每件60元,每星期可卖出300件.市场调查反映:每降价一元,每星期可
卖出18件,且不低于45元,每件降x元(1)设y件/每星期,求y和x函数关系及x取值范围(2)如何定价每星期利润最大?求最大利润.
请各位热心人士看清题目,我找过了,都与此题不一样
已知关于X的方程X^2-2(m-1)X+m^2-3=0有两个不相等的实数根求实数根m的取值范围
sos 这是我所有的分了

已知某商品的进价为每件40元,现在售价是每件60元,每星期可卖出300件.市场调查反映:每降价一元,每星期可卖出18件,且不低于45元,每件降x元(1)设y件/每星期,求y和x函数关系及x取值范围(2
1.y=300+18x(00
所以-2m-2>0
m

1.y=300+18x(0<=x<=15)
2.由题目可知每星期的利润是(20-x)*y(每件利润*件数)
又因为y=300+18x,所以
利润=(20+x)*(300-10x)
利润=6000+360x-300x-18x2(2次方)
利润=6250利润最大为6250
第二题:因为有两个不等实数根,△=(2(m-1))2-4*(m2-3)>0

全部展开

1.y=300+18x(0<=x<=15)
2.由题目可知每星期的利润是(20-x)*y(每件利润*件数)
又因为y=300+18x,所以
利润=(20+x)*(300-10x)
利润=6000+360x-300x-18x2(2次方)
利润=6250利润最大为6250
第二题:因为有两个不等实数根,△=(2(m-1))2-4*(m2-3)>0
=4*(m2-2m+1)-4*(m2-3)>0
所以-2m-2>0
m<-1

收起

y=300+18x(x大于等于0小于等于15)
利润=(60-X-40)(300+18y)
把y用X代入利润计算,得到关于X的1元二次方程,再通过单调性,及范围求得最大值

解(1)
y=18x+300 (0≤0≤15)
(2)设获得的利润为W
则W=(60-40-x)(300+18x)
∴W=-18x^2+60x+6000
∴W=-18(x-5/3)^2+6050
定价为175/3元,最大利润为6050元。
数字是不是有问题?

分析:(1)根据题意,卖出了(60-x)(300+20x)元,原进价共40(300+20x)元.
则y=(60-x)(300+20x)-40(300+20x).
(2)根据x=-b2a
时,y有最大值.
(3)根据1,2得出函数的大致图象.
(1)y=(60-x)(300+20x)-40(300+20x),(3分)
即y=-20x2+100x+60...

全部展开

分析:(1)根据题意,卖出了(60-x)(300+20x)元,原进价共40(300+20x)元.
则y=(60-x)(300+20x)-40(300+20x).
(2)根据x=-b2a
时,y有最大值.
(3)根据1,2得出函数的大致图象.
(1)y=(60-x)(300+20x)-40(300+20x),(3分)
即y=-20x2+100x+6000.(4分)
因为降价要确保盈利,所以40<60-x≤60(或40<60-x<60也可).
解得0≤x<20(或0<x<20).(6分)
(2)当x=-100 2×(-20) =2.5时,(7分)
y有最大值4×(-20)×6000-1002 4×(-20) =6125,
即当降价2.5元时,利润最大且为6125元.(8分)

收起

1)y=18x+300(x小等于15)
2)设利润为Z..则Z=(60-40-X)*Y.
即Z=(20-X)*(18X+300).
整理一下,既得Z=-6【3X²-10x-1000】
再整理得,Z=-3*(X-5/3)²+12100/2
则可知当降价为5/3时利润最大为12100/2(约为6050元)
最后定价为(60-5/3)...

全部展开

1)y=18x+300(x小等于15)
2)设利润为Z..则Z=(60-40-X)*Y.
即Z=(20-X)*(18X+300).
整理一下,既得Z=-6【3X²-10x-1000】
再整理得,Z=-3*(X-5/3)²+12100/2
则可知当降价为5/3时利润最大为12100/2(约为6050元)
最后定价为(60-5/3)=175/3,约为58.3元是利润最大

收起

y=18x+300 0<=x<=15
设sum为最后利润:
sum=y*(60-40-x)
=(18x+300)*(60-x)
最后将x逐个代入 得到最优值:6050

(1)y=300+18x ①
60-x>=45
不取负值 x范围是 0~15
(2) 设利润为z
z=y(60-x)-40y ②
将①带入②就是一个关于x的二元方程
根据Δ=0算出x的取值
60-x就是定价 根据x值算出y 再算出z z就是最大利润

(1)y=300+18x (0≤x≤15,x∈Z)
(2)求y(20-x)的最大值 配完全平方式就有答案
我用在线计算器: 当X=2时, 最大值为6048

第一题?
这数?
第二题
利用b^2-4ac>0
求得m<2就可以了

【初三】已知某商品的进价为每件40元 售价是每件50元 每个月可卖出210件 如果每件商品的售价每上涨1元则每个月要少卖10件设每件商品的售价上涨x元(x为正整数) 每件售价不能高于65元 每个 已知某商品的进价为每件40元,售价是每件50元,每个月可卖出210件,如果每件商品的售价每上涨1一元则每个月要少卖10件.(1)设每件商品的售价上涨x元(x为正整数),每件售价不能高于65元,每 已知某商品的进价为每件40元,现在售价是每件60元,每星期可卖出300件.市场调查反映:每降价一元,每星期可多卖出20件,且不低于45元,每件降x元(X为正整数)(1)售价为 元每件利润 元(用户 某商品现在的售价为每件60元时,每星期可售出300件,市场调查反应:如果调整价格,每涨价1元,每星期可少卖10件,每降价1元,每星期可多卖20件,已知商品的进价为每件40元,当商品售价为x元时,每 已知某商品的进价为每件40元,售价是每件50元,每个月可卖出210件,如果每件商品售价每上涨1元则每个月要少卖10件设每件商品的利润为x元,每个月的销售利润为y元,求y与x的函数关系式注意题目 某商品现在的售价是每件60元,每星期可卖出300件,市场调查反应:如调整价格,每涨价1元,每星期要少卖出10件;每降价1元,每星期可多卖出20件,已知商品的进价为每件40元,求如何定价利润最大? 已知某商品的进价为每件40元,现在售价是每件60元,每星期可卖出300件.市场调查反映:每降价一元,每星期可卖出18件,且不低于45元,每件降x元(1)设y件/每星期,求y和x函数关系及x取值范围(2 为什么第二问我算出来是负数?某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元).设每件商品的售价上 某商品的进价为每件40元,售价为每件50元,每个月可卖出210件某商品的进价为每件40元,售价为每件50元时,每个月可卖出210件.如果每件商品的售价上涨1元,则每个月少卖出10件(每件售价不能高 某商品现在的售价为每件60元,每星期可卖出300件,如调整价格,每涨价1元,每星期少卖10件;每降价1元,每星期多卖20件,已知商品的进价为每件40元,针对这种商品的销售情况;(1)当销售单价定 某商品的进价为每件40元,如果售价为每件50元,每月可卖出210件如果售价超过50元但不超过80元每件商品...某商品的进价为每件40元,如果售价为每件50元,每月可卖出210件如果售价超过50元但不超 某商品的进价为每件30元,现在的售价为每件40元,每星期可卖出150件,市场调查反映:如果每件的售价每涨1元(售价每件不能高于45元),那么每星期少卖10件.设每件涨价x元(x为非负整数)每星 已知某商品的进价为每件40元.现在的售价是每件60元,每星期可卖出300件.市场调查反映:如调整价格 ,每涨价一元,每星期要少卖出10件;每降价一元,每星期可多卖出20件.若商场规定试销期间获 某商品现在的售价为每件60元,每星期可卖出300件.市场调查放映;如调整价格,每涨价1元,每星期要少卖10件;每降价1元,每星期可多卖出20件,已知商品的进价为每件40元,如何定价才能使利润最 如何定价才能使利润最大化?某商品现在的售价为每件60元,每星期可卖出300件,如调整价格,每涨价1元,每星期要少卖出10件;每降价1元,每星期可多卖出20件,已知商品的进价为每件40元,如何定价 求解二元一次函数例题某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出20件,已知商品的进价为每件40元,如何定价才能 一定在线写解答某商品的进价为每件30元,现在的售价为每件40元,每星期可卖出300件市场调查反映:若每件的:若每件的售价每涨1元,则每星期少卖2件;如售价超过70元,若再涨价,则每涨1元每 某商店的某商品的进价为30元/件,现在的售价为40元/件,每星期可卖出150件.市场调查反应,如果每件的售价每涨1元(售价不能高于45元/件),那么每星期少卖10件,设每件涨价x元(x为非整数),每