若-3≤log1/2x≤-1/2,求f(x)=(log2 x/2)*(log2 x/4)的最大值和最小值如题
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 08:42:14
x){ѽTQ璜tC}
KH<ؔQi7R7zS1|>ٜK?mtR^r"}*6j~
d* `
JEECD4caLX
若-3≤log1/2x≤-1/2,求f(x)=(log2 x/2)*(log2 x/4)的最大值和最小值如题
若-3≤log1/2x≤-1/2,求f(x)=(log2 x/2)*(log2 x/4)的最大值和最小值
如题
若-3≤log1/2x≤-1/2,求f(x)=(log2 x/2)*(log2 x/4)的最大值和最小值如题
-3≤log1/2(x)≤-1/2
1/2≤log2(x)≤3
f(x)=[log2(x/2)][log2(x/4)]
=[log2(x)-1][log2(x)-2]
=[log2(x)]^2-3log2(x)+2
=[log2(x)-3/2]^2-1/4
log2(x)=3/2时,有
f(x)min=-1/4
log2(x)=3时,有f(x)max=2