求积分∫dx/x*√(lnx(1-lnx)) 积分上限为e 下限为 √e我的做法是:变化 ∫1/√lnx(1-lnx)d(lnx),然后想把√lnx和√(1-lnx)拆项,但是不知道怎么拆= =

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 11:27:59
求积分∫dx/x*√(lnx(1-lnx)) 积分上限为e 下限为 √e我的做法是:变化 ∫1/√lnx(1-lnx)d(lnx),然后想把√lnx和√(1-lnx)拆项,但是不知道怎么拆= =
xRN@.[аl   fbc|`Ly?+Bx0.\tz3{f\7kTMz0[CU8%ZfrQ"Z7-kPCL-))4>UZuL+ Qꅖ ,f^dlzrӱ4-?M'L) ɮ(uߦRF'@zobjw'e>ƂO-sIz "  rR ?8;^҅1IJ;eC"۲elQ=A]0bZb -5hX^"IKi9E kIڏ$4xk۶nheN7ʯu7`H̦HY m+G*%xH[Z;_{_ -\_5]A

求积分∫dx/x*√(lnx(1-lnx)) 积分上限为e 下限为 √e我的做法是:变化 ∫1/√lnx(1-lnx)d(lnx),然后想把√lnx和√(1-lnx)拆项,但是不知道怎么拆= =
求积分∫dx/x*√(lnx(1-lnx)) 积分上限为e 下限为 √e
我的做法是:
变化 ∫1/√lnx(1-lnx)d(lnx),然后想把√lnx和√(1-lnx)拆项,但是不知道怎么拆= =

求积分∫dx/x*√(lnx(1-lnx)) 积分上限为e 下限为 √e我的做法是:变化 ∫1/√lnx(1-lnx)d(lnx),然后想把√lnx和√(1-lnx)拆项,但是不知道怎么拆= =
然后可以令lnx=(sint)^2,积分范围是t从π/4到π/2
∫1/√lnx(1-lnx)d(lnx)=∫(2sintcost/sintcost)dt=2∫dt=π/2

凑微分法
∫dx/x*√(lnx(1-lnx))
=∫dlnx/√(lnx(1-lnx))
令lnx=t
=∫1/√(t(1-t))dt
=∫1/√(t-t^2)dt
=∫1/√[1/4-(t^2-t+1/4)]dt
=∫1/√[1/4-(t-1/2)^2]dt
=∫1/√[1/4-(t-1/2)^2]d(t-1/2)
=arcsin[(t-1/2)/(1/2)]+C
反代就可以了

∫1/√lnx(1-lnx)d(lnx)
lnx=t
∫1/√lnx(1-lnx)d(lnx)
=∫1/√(1/4-1/4+t-t^2)dt
=∫1/√[1/4-(t-1/2)^2]d(t-1/2)
【后面套公式
然后还原】